02-13 Softmax回归

目录

  • Softmax回归
  • 一、Softmax回归详解
    • 1.1 让步比
    • 1.2 不同类之间的概率分布
    • 1.3 目标函数
    • 1.4 目标函数最大化
  • 二、Softmax回归优缺点
    • 2.1 优点
    • 2.2 缺点

更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/

Softmax回归

Softmax回归属于多分类\(c_1,c_2,\ldots,c_k\)模型,它通过估计某个样本属于\(k\)个类别的各自的概率达到多分类的目的。它是逻辑回归的一般形式,即当\(k=2\)的时候退化为逻辑回归。

一、Softmax回归详解

1.1 让步比

由于softmax回归更多的是逻辑回归的多分类形式,此处只给出softmax的定义及公式。
让步比可以理解成有利于某一特定事件的概率,可以定义为
\[
{\frac{p}{1-p}}
\]
在已知二分类问题的情况下每个分类的概率分别为\(\hat{y_i}\)和\(1-\hat{y_i}\),可以定义logit函数,即让步比的对数形式(log-odds)为
\[
\begin{align}
\log{it}(\hat{y_i}) & = \log{\frac{p(y=1|x,\omega)}{p(y=0|x,\omega)}} \& = \log{\frac{\hat{y_i}}{1-\hat{y_i}}} \& = \log{\frac{{\frac{1}{1+e^{-\omega^Tx}}}}{{\frac{-\omega^Tx}{1+e^{-\omega^Tx}}}}} \& = \omega^Tx
\end{align}
\]
其中\(\log{it}(p)\)函数等于事件发生的概率除以不发生的概率取对数,即表示特征值和对数概率之间的线性关系。

1.2 不同类之间的概率分布

现在假设有一个\(k\)元分类模型,即样本的输出值为\(c_1,c_2,\ldots,c_k\),对于某一个实例预测为\(c_i\)样本的概率总和为\(1\),即
\[
\sum_{i=1}^k p(y=i|x,\omega) =1
\]
该\(k\)元分类模型依据让步比的对数形式可以得到
\[
\begin{align}
& \ln{\frac{p(y=1|x,\omega)}{p(y=k|x,\omega)}} = {\omega_1^T}x \& \ln{\frac{p(y=2|x,\omega)}{p(y=k|x,\omega)}} = {\omega_2^T}x \& \cdots \& \ln{\frac{p(y=k-1|x,\omega)}{p(y=k|x,\omega)}} = {\omega_{k-1}^T}x \& \ln{\frac{p(y=k|x,\omega)}{p(y=k|x,\omega)}} = {\omega_{k}^T}x = 0 \\end{align}
\]
通过对上述公式化简可得
\[
\begin{align}
& {\frac{p(y=1|x,\omega)}{p(y=k|x,\omega)}} = e^{{\omega_1^T}x} \& {\frac{p(y=2|x,\omega)}{p(y=k|x,\omega)}} = e^{{\omega_2^T}x} \& \cdots \& {\frac{p(y=k-1|x,\omega)}{p(y=k|x,\omega)}} = e^{{\omega_{k-1}^T}x} \\end{align}
\]
\[
\begin{align}
e^{{\omega_1^T}x}+e^{{\omega_1^T}x}+\cdots+e^{{\omega_{k-1}^T}x} & = \sum_{i=1}^{k-1} e^{{\omega_i^T}x} \& = {\frac{p(y=1|x,\omega)}{p(y=k|x,\omega)}} + {\frac{p(y=2|x,\omega)}{p(y=k|x,\omega)}} + \cdots + {\frac{p(y=k-1|x,\omega)}{p(y=k|x,\omega)}} \& = {\frac{p(y=1|x,\omega)+p(y=2|x,\omega)+\cdots+p(y=k-1|x,\omega)}{p(y=k|x,\omega)}} \& = {\frac{1-p(y=k|x,\omega)}{p(y=k|x,\omega)}} \\end{align}
\]
既得\(p(y=k|x,\omega)={\frac{1}{1+\sum_{i=1}^{k-1} e^{{\omega_i^T}x}}}\)

通过\(p(y=k|x,\omega)\)即可推出\(p(y=j|x,\omega)={\frac{e^{{\omega_j^T}x}}{1+\sum_{t=1}^{k-1} e^{{\omega_t^T}x}}} \quad j=1,2,\ldots,k-1\),因此可以得到\(k\)元分类模型的\(k\)个类的概率分布为
\[
p(c=k|x,\omega)=
\begin{cases}
{\frac{e^{{\omega_j^T}x}}{1+\sum_{t=1}^{k-1} e^{{\omega_t^T}x}}} \quad j=1,2,\ldots,k-1 \quad if类别为1,2,\ldots,k-1 \{\frac{1}{1+\sum_{i=1}^{k-1} e^{{\omega_i^T}x}}} \quad if类别为k \\end{cases}
\]

1.3 目标函数

上一节基于\({\omega_k^T}x=0\)计算出每个分类的概率,然而现实中往往\({\omega_k^T}x\neq0\),可以使用上一节的推导过程假设\({\omega_k^T}x\neq0\)则可以推导出\(k\)元分类模型的\(k\)个类的概率分布为
\[
p(c=k|x,\omega)={\frac{e^{{\omega_j^T}x}}{\sum_{t=1}^{k} e^{{\omega_t^T}x}}} \quad j=1,2,\ldots,k
\]
通过上述\(k\)个类别的概率分布可得似然函数
\[
\begin{align}
L(\omega) & = \prod_{i=1}^m \prod_{k=1}^k p(c=k|x_i,\omega)^{{y_i}_k} \& = \prod_{i=1}^m \prod_{k=1}^k ({\frac{e^{({\omega_k^T}x_i)}}{\sum_{t=1}^k e^{{\omega_t^T}x_i}}})^{y_ik}
\end{align}
\]

通过似然函数即可得对数似然函数即目标函数(注:该目标函数与交叉熵损失函数的形式一致,二元逻辑回归可以理解为交叉熵损失函数两个类变量的特殊形式,Softmax回归可以理解成交叉熵损失函数的多个类变量的特殊形式,交叉熵为
\[
\begin{align}
J_m(\omega) & = \log{L(\omega)} \& = \sum_{i=1}^m\sum_{k=1}^k {y_i}_k ({\omega_k^T}x_i - \log\sum_{t=1}^k e^{({\omega_t^T}x_i)})
\end{align}
\]

1.4 目标函数最大化

由于Softmax回归和逻辑回归都可以使用梯度上升法使得目标函数最大化,并且方式一样,因此此处只给出目标函数对参数的偏导。
\[
{\frac{\partial{J(\omega)}}{\partial\omega_k}}=\sum_{i=1}^m ({y_i}_k-p({y_i}_k|x_i,\omega_k))x_i
\]

二、Softmax回归优缺点

2.1 优点

  1. 基于模型本身可以处理多分类问题

2.2 缺点

  1. 计算极其复杂

\(2^2\)

原文地址:https://www.cnblogs.com/nickchen121/p/11686742.html

时间: 2024-11-06 13:10:05

02-13 Softmax回归的相关文章

DeepLearning tutorial(1)Softmax回归原理简介+代码详解

DeepLearning tutorial(1)Softmax回归原理简介+代码详解 @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/43157801 本文介绍Softmax回归算法,特别是详细解读其代码实现,基于python theano,代码来自:Classifying MNIST digits using Logistic Regression,参考UFLDL. 一.Softmax回归简介 关于算法的详

【动手学pytorch】softmax回归

一.什么是softmax? 有一个数组S,其元素为Si ,那么vi 的softmax值,就是该元素的指数与所有元素指数和的比值.具体公式表示为: softmax回归本质上也是一种对数据的估计 二.交叉熵损失函数 在估计损失时,尤其是概率上的损失,交叉熵损失函数更加常用.下面是交叉熵 当我们预测单个物体(即每个样本只有1个标签),y(i)为我们构造的向量,其分量不是0就是1,并且只有一个1(第y(i)个数为1).于是.交叉熵只关心对正确类别的预测概率,因为只要其值足够大,就可以确保分类结果正确.遇

Softmax回归(Softmax Regression, K分类问题)

Softmax回归:K分类问题, 2分类的logistic回归的推广.其概率表示为: 对于一般训练集: 系统参数为: Softmax回归与Logistic回归的关系 当Softmax回归用于2分类问题,那么可以得到: 令θ=θ0-θ1,就得到了logistic回归.所以实际上logistic回归虽然有2个参数向量,但这2个参数向量可以退化到1个参数向量.推广到K个类别,那么就需要K-1个参数向量 参数求解 类似于logistic regression,求最大似然概率,有: 其中1{k=y}为真值

softmax回归(理论部分解释)

前面我们已经说了logistic回归,训练样本是,(且这里的是d维,下面模型公式的x是d+1维,其中多出来的一维是截距横为1,这里的y=±1也可以写成其他的值,这个无所谓不影响模型,只要是两类问题就可以),训练好这个模型中参数θ以后(或者是这个模型,这俩是一个模型),然后给入一个新的,我们就可以根据模型来预测对应label=1或0的概率了. 前面处理的是两类问题,我们想把这个两类问题扩展,即根据训练好的模型,给入一个新的,我们就可以根据模型来预测对应label=1,2,…k等多个值的概率.我们首

机器学习 —— 基础整理(五):线性回归;二项Logistic回归;Softmax回归;广义线性模型

本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 二项Logistic回归是我去年入门机器学习时学的第一个模型,我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开的地方).比较有意思的是那时候还不会矩阵微积分,推导梯度时还是把矩阵全都展开求的(牛顿法要用的二阶梯度也是)... 下面的文字中,"Logistic回归"都表示用于二分类的二项Logistic回归. 首先约定一下记号

UFLDL教程笔记及练习答案三(Softmax回归与自我学习)

1:softmax回归 当p(y|x,theta)满足多项式分布,通过GLM对其进行建模就能得到htheta(x)关于theta的函数,将其称为softmax回归.教程中已经给了cost及gradient的求法.需要注意的是一般用最优化方法求解参数theta的时候,采用的是贝叶斯学派的思想,需要加上参数theta. 习题答案: (1) 数据加载------代码已给 (2) %% STEP 2: Implement softmaxCost   得到计算cost和gradient M = theta

Softmax回归

Reference:http://ufldl.stanford.edu/wiki/index.php/Softmax_regression 起源:Logistic的二类分类    Softmax回归是Logistic回归的泛化版本,用于解决线性多类(K类)的分类问题.Logistic回归可以看作是Softmax回归在K=2时的特例. ①如何从2类转化为K类? 解决方案是引入K组(W.b)参数,选择$max P(Y=j|x^{i},\theta,b)$作为最终分类即可. 由于存在K组参数,原来的$

ufldl学习笔记与编程作业:Softmax Regression(softmax回归)

ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学dl. 于是最近就开始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习链接:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ softmax回归其实是逻

机器学习之线性回归---logistic回归---softmax回归

1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数学模型用于预测或者分类.该方法处理的数据可以是多维的. 讲义最初介绍了一个基本问题,然后引出了线性回归的解决方法,然后针对误差问题做了概率解释.之后介绍了logistic回归.最后上升到理论层次,提出了一般回归. 2 问题引入 这个例子来自http://www.cnblogs.com/LeftNot

DeepLearning之路(二)SoftMax回归

Softmax回归 1. softmax回归模型 softmax回归模型是logistic回归模型在多分类问题上的扩展(logistic回归解决的是二分类问题). 对于训练集,有. 对于给定的测试输入,我们相拥假设函数针对每一个类别j估算出概率值.也就是说,我们估计得每一种分类结果出现的概率.因此我们的假设函数将要输入一个维的向量来表示这个估计得概率值.假设函数形式如下: 其中是模型的参数.这一项对概率分布进行归一化,舍得所有概率之和为1. softmax回归的代价函数: 上述公式是logist