简单理解EM算法Expectation Maximization

1.EM算法概念

EM 算法,全称 Expectation Maximization Algorithm。期望最大算法是一种迭代算法,用于含有隐变量(Hidden Variable)的概率参数模型的最大似然估计或极大后验概率估计。

1.1 问题描述

我们假设学校男生和女生分别服从两种不同的正态分布,即男生  ,女生  ,(注意:EM算法和极大似然估计的前提是一样的,都要假设数据总体的分布,如果不知道数据分布,是无法使用EM算法的)。那么该怎样评估学生的身高分布呢?

简单啊,我们可以随便抽 100 个男生和 100 个女生,将男生和女生分开,对他们单独进行极大似然估计。分别求出男生和女生的分布。

假如某些男生和某些女生好上了,纠缠起来了。咱们也不想那么残忍,硬把他们拉扯开。这时候,你从这 200 个人(的身高)里面随便给我指一个人(的身高),我都无法确定这个人(的身高)是男生(的身高)还是女生(的身高)。用数学的语言就是,抽取得到的每个样本都不知道是从哪个分布来的。那怎么办呢?

1.2 EM算法

这个时候,对于每一个样本或者你抽取到的人,就有两个问题需要估计了,一是这个人是男的还是女的,二是男生和女生对应的身高的正态分布的参数是多少。这两个问题是相互依赖的:

  • 当我们知道了每个人是男生还是女生,我们可以很容易利用极大似然对男女各自的身高的分布进行估计。
  • 反过来,当我们知道了男女身高的分布参数我们才能知道每一个人更有可能是男生还是女生。例如我们已知男生的身高分布为  , 女生的身高分布为 , 一个学生的身高为180,我们可以推断出这个学生为男生的可能性更大。

但是现在我们既不知道每个学生是男生还是女生,也不知道男生和女生的身高分布。这就成了一个先有鸡还是先有蛋的问题了。鸡说,没有我,谁把你生出来的啊。蛋不服,说,没有我,你从哪蹦出来啊。为了解决这个你依赖我,我依赖你的循环依赖问题,总得有一方要先打破僵局,不管了,我先随便整一个值出来,看你怎么变,然后我再根据你的变化调整我的变化,然后如此迭代着不断互相推导,最终就会收敛到一个解(草原上的狼和羊,相生相克)。这就是EM算法的基本思想了。

EM的意思是“Expectation Maximization”,具体方法为:

  • 先设定男生和女生的身高分布参数(初始值),例如男生的身高分布为  , 女生的身高分布为  ,当然了,刚开始肯定没那么准;
  • 然后计算出每个人更可能属于第一个还是第二个正态分布中的(例如,这个人的身高是180,那很明显,他极大可能属于男生),这个是属于Expectation 一步;
  • 我们已经大概地按上面的方法将这 200 个人分为男生和女生两部分,我们就可以根据之前说的极大似然估计分别对男生和女生的身高分布参数进行估计(这不变成了极大似然估计了吗?极大即为Maximization)这步称为 Maximization;
  • 然后,当我们更新这两个分布的时候,每一个学生属于女生还是男生的概率又变了   ,那么我们就再需要调整E步;
  • ……如此往复,直到参数基本不再发生变化或满足结束条件为止。

1.3 总结

上面的学生属于男生还是女生我们称之为隐含参数,女生和男生的身高分布参数称为模型参数。

EM 算法解决这个的思路是使用启发式的迭代方法,既然我们无法直接求出模型分布参数,那么我们可以先猜想隐含参数(EM 算法的 E 步),接着基于观察数据和猜测的隐含参数一起来极大化对数似然,求解我们的模型参数(EM算法的M步)。由于我们之前的隐含参数是猜测的,所以此时得到的模型参数一般还不是我们想要的结果。我们基于当前得到的模型参数,继续猜测隐含参数(EM算法的 E 步),然后继续极大化对数似然,求解我们的模型参数(EM算法的M步)。以此类推,不断的迭代下去,直到模型分布参数基本无变化,算法收敛,找到合适的模型参数。

一个最直观了解 EM 算法思路的是 K-Means 算法。在 K-Means 聚类时,每个聚类簇的质心是隐含数据。我们会假设 K 个初始化质心,即 EM 算法的 E 步;然后计算得到每个样本最近的质心,并把样本聚类到最近的这个质心,即 EM 算法的 M 步。重复这个 E 步和 M 步,直到质心不再变化为止,这样就完成了 K-Means 聚类。

参考链接:

https://blog.csdn.net/lin_limin/article/details/81048411

https://zhuanlan.zhihu.com/p/36331115

原文地址:https://www.cnblogs.com/jiashun/p/em.html

时间: 2024-11-11 09:06:35

简单理解EM算法Expectation Maximization的相关文章

EM算法(expectation maximization algorithm)

最大期望算法 Expectation Maximization概念

在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl).最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域. 可以有一些比较形象的比喻说法把这个算法讲清楚.比如说食堂的大师傅炒了一份菜,要等分成两份给两个人吃,显然没有必要拿来天平一点一点的精确的去称分量,最简单的办法是先随意的把菜分到两个碗中,

简单理解Hash算法的作用

什么是Hash Hash算法,简称散列算法,也成哈希算法(英译),是将一个大文件映射成一个小串字符.与指纹一样,就是以较短的信息来保证文件的唯一性的标志,这种标志与文件的每一个字节都相关,而且难以找到逆向规律. 举个列子: 服务器存了10个文本文件,你现在想判断一个新的文本文件和那10个文件有没有一个是一样的.你不可能去比对每个文本里面的每个字节,很有可能,两个文本文件都是5000个字节,但是只有最后一位有所不同,但这样的,你前面4999位的比较就是毫无意义.那一个解决办法,就是在存储那10个文

EM算法-原理详解

1. 前言 概率模型有时既含有观测变量(observable variable),又含有隐变量或潜在变量(latent variable),如果仅有观测变量,那么给定数据就能用极大似然估计或贝叶斯估计来估计model参数:但是当模型含有隐变量时,需要一种含有隐变量的概率模型参数估计的极大似然方法估计--EM算法 2. EM算法原理 EM算法称为期望极大值算法(expectation maximizition algorithm,EM),是一种启发式的迭代算法. EM算法的思路是使用启发式的迭代方

EM算法(一)-问题引出

一.基本认识 EM(Expectation Maximization Algorithm)算法即期望最大化算法.这个名字起的很理科,就是把算法中两个步骤的名称放到名字里,一个E步计算期望,一个M步计算最大化,然后放到名字里就OK. EM算法是一种迭代算法,是1977年由Demspster等人总结提出,用于有隐含变量的概率模型参数的极大似然估计,或极大后验概率估计.这里可以注意下,EM算法是针对于有隐含变量的问题,而且类似极大似然估计,也就是原有的极大似然估计的方法解决不了具有隐含变量的问题,所以

统计学习方法c++实现之八 EM算法与高斯混合模型

EM算法与高斯混合模型 前言 EM算法是一种用于含有隐变量的概率模型参数的极大似然估计的迭代算法.如果给定的概率模型的变量都是可观测变量,那么给定观测数据后,就可以根据极大似然估计来求出模型的参数,比如我们假设抛硬币的正面朝上的概率为p(相当于我们假设了概率模型),然后根据n次抛硬币的结果就可以估计出p的值,这种概率模型没有隐变量,而书中的三个硬币的问题(先抛A然后根据A的结果决定继续抛B还是C),这种问题中A的结果就是隐变量,我们只有最后一个硬币的结果,其中的隐变量无法观测,所以这种无法直接根

混合高斯模型(Mixtures of Gaussians)和EM算法

混合高斯模型(Mixtures of Gaussians)和EM算法 主要内容: 1. 概率论预备知识 2. 单高斯模型 3. 混合高斯模型 4. EM算法 5. K-means聚类算法 一.概率论预备知识 1. 数学期望/均值.方差/标准差 设离散型随机变量X的分布律为 则称为X的数学期望或均值 设连续型随机变量X的概率密度函数(pdf)为 则其数学期望定义为: 随机变量X的方差: 随机变量X的标准差: 2. 正态分布.协方差 正态分布: 概率密度函数: 设(X,Y)为二维随机变量,若存在,则

统计学习方法 李航---第9章 EM算法及其推广

第9章 EM算法及其推广 EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求极大( maximization ),所以这一算法称为期望极大算法(expectation maximization algorithm),简称EM算法. 9.1  EM算法的引入 一般地,用Y表示观测随机变量的数据,Z表示隐随机变量的数据.Y和Z连在一起称为完全数据( c

EM算法[转]

最大期望算法:EM算法. 在统计计算中,最大期望算法(EM)是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量. 最大期望算法经过两个步骤交替进行计算: 第一步是计算期望(E),利用对隐藏变量的现有估计,计算其最大似然估计值: 第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值. M步上找到的参数估计值被用于下一个E步计算中,这个过程不断交替进行. 总体来说,EM算法流程如下: 1.初始化分布参数 2.重复直到收敛: E步:估未知参数的