OGB: Open Graph Benchmark
https://github.com/snap-stanford/ogb
OGB is a collection of benchmark datasets, data-loaders and evaluators for graph machine learning in PyTorch.
Data-loaders are fully compatible with PyTorch Geometric (PYG) and Deep Graph Library (DGL). The goal is to have an easily-accessible standardized large-scale benchmark datasets to drive research in graph machine learning.
Deep Graph Library (DGL)
DGL works on PyTorch 0.4.1+ and MXNet nightly build
PyTorch Geometric (PYG)
https://pytorch-geometric.readthedocs.io/en/latest/
https://github.com/rusty1s/pytorch_geometric
PyGSP:Graph Signal Processing in Python
https://pygsp.readthedocs.io/en/stable/index.html
https://pygsp.readthedocs.io/en/stable/reference/index.html
Development: https://github.com/epfl-lts2/pygsp.git
https://github.com/wangg12/pygsp.git
networkx
https://pypi.org/project/networkx/
https://github.com/networkx/networkx
Website : http://networkx.github.io/
igraph:network analysis tools. igraph can be programmed in R, Python, Mathematica and C/C++.
graph-tools,Efficient network analysis
https://git.skewed.de/count0/graph-tool
https://graph-tool.skewed.de/static/doc/index.html
https://github.com/solstag/graph-tool
Agglomerative cluster tool (pip install agglomcluster)
https://github.com/MSeal/agglom_cluster
http://arxiv.org/pdf/cond-mat/0309508v1.pdf
因果关系推理,causal inference in graphs and in the pairwise settings
https://github.com/Diviyan-Kalainathan/CausalDiscoveryToolbox
https://diviyan-kalainathan.github.io/CausalDiscoveryToolbox/html/index.html
pip install cdt
Causal Discovery Toolbox: Uncover causal relationships in Python
https://arxiv.org/abs/1903.02278
原文地址:https://www.cnblogs.com/jeshy/p/12044583.html