Description
There is a stone game.At the beginning of the game the player picks n piles of stones in a circle
.
The goal is to merge the stones in one pile observing the following rules:
At each step of the game,the player can merge two adjacent piles to a new pile.
The score is the number of stones in the new pile.
You are to determine the minimum of the total score.
Example
Example 1:
Input:
[1,1,4,4]
Output:18
Explanation:
1. Merge second and third piles => [2, 4, 4], score +2
2. Merge the first two piles => [6, 4],score +6
3. Merge the last two piles => [10], score +10
Example 2:
Input:
[1, 1, 1, 1]
Output:8
Explanation:
1. Merge first and second piles => [2, 1, 1], score +2
2. Merge the last two piles => [2, 2],score +2
3. Merge the last two piles => [4], score +4
思路:动态规划。dp[i][j]代表从i合并到j的最少花费。转移方程为dp[i][j] = min(dp[i][k] + dp[k+1][j] + sum[j + 1] - sum[i])
public class Solution { /** * @param A an integer array * @return an integer */ public int stoneGame2(int[] A) { // Write your code here int n = A.length; if (n <= 1) return 0; int[][] dp = new int[2 * n][2 * n]; int[] sum = new int[2 * n + 1]; for (int i = 1; i <= 2 * n; ++i) { sum[i] = sum[i - 1] + A[(i - 1) % n]; } for (int i = 0; i < 2 * n; ++i) { dp[i][i] = 0; } for(int len = 2; len <= 2 * n; ++len) for(int i= 0;i < 2 * n && i + len - 1 < 2 * n; ++i) { int j = i + len - 1; dp[i][j] = Integer.MAX_VALUE; for (int k = i; k < j; ++k) { if (dp[i][k] + dp[k+1][j] + sum[j + 1] - sum[i] < dp[i][j]) dp[i][j] = dp[i][k] + dp[k+1][j] + sum[j + 1] - sum[i]; } } int ans = Integer.MAX_VALUE; for (int i = 0; i < n; ++i) if (dp[i][i + n - 1] < ans) ans = dp[i][i + n - 1]; return ans; } }
原文地址:https://www.cnblogs.com/FLAGyuri/p/12078341.html
时间: 2024-11-09 03:27:45