【论文阅读】DGCNN:Dynamic Graph CNN for Learning on Point Clouds

  毕设进了图网络的坑,感觉有点难,一点点慢慢学吧,本文方法是《Rethinking Table Recognition using Graph Neural Networks》中关系建模环节中的主要方法。

## 概述

  本文是对经典的PointNet进行改进,主要目标是设计一个可以直接使用点云作为输入的CNN架构,可适用于分类、分割等任务。主要的创新点是提出了一个新的可微网络模块EdgeConv(边卷积操作)来提取局部邻域信息。

  其整体的网络结构如下所示,值得注意的有:

  • 整体的网络结构与PointNet的结构类似,最重要的区别就是使用EdgeConv代替MLP;
  • 对于每个EdgeConv模块,我们即考虑全局特征,有考虑局部特征,,聚合函数 
  • EdgeConv模块中KNN图的K值是一个超参,分类网络中K=20,而在分割网络中K=30;
  • 在分割网络中,将global descripter和每层的local descripter进行连接后对每个点输出一个预测分数;
  • 每层后的mlp都是为了计算边特征(edge features),实现动态的图卷积。

## Edge Convolution

  • 上图是 EdgeConv 的示意图。假设一个F维点云,其中 F 表示每个点的维度,最简单的可能是 x, y, z 三维,另外还可能引入每个点颜色、法线等信息。
  • 给定一个有向图 用来表示点云的局部结构,其中顶点为,边为 ,边特征函数,其中 h 是 
  • 上图1就描述了一个点Xi和其邻近点X的边特征eij求解过程,h使用全连接,用tf.layers.dense实现。(注:Dense and fully connected are two names for the same thing.)
  • 特征聚合函数描述的是结点参数更新的过程,定义为□,其定义是:

  

原文地址:https://www.cnblogs.com/hithongming/p/11869428.html

时间: 2024-10-15 23:26:08

【论文阅读】DGCNN:Dynamic Graph CNN for Learning on Point Clouds的相关文章

【CV论文阅读】Dynamic image networks for action recognition

论文的重点在于后面approximation部分. 在<Rank Pooling>的论文中提到,可以通过训练RankSVM获得参数向量d,来作为视频帧序列的representation.而在dynamic论文中发现,这样的参数向量d,事实上与image是同等大小的,也就是说,它本身是一张图片(假如map与image同大小而不是提取的特征向量),那么就可以把图片输入到CNN中进行计算了.如下图可以看到一些参数向量d pooling的样例 参数向量d的快速计算 把计算d的过程定义一个函数.一个近似

深度学习论文阅读笔记--Deep Learning Face Representation from Predicting 10,000 Classes

来自:CVPR 2014   作者:Yi Sun ,Xiaogang Wang,Xiaoao Tang 题目:Deep Learning Face Representation from Predicting 10,000 Classes 主要内容:通过深度学习来进行图像高级特征表示(DeepID),进而进行人脸的分类. 优点:在人脸验证上面做,可以很好的扩展到其他的应用,并且夸数据库有效性:在数据库中的类别越多时,其泛化能力越强,特征比较少,不像其他特征好几K甚至上M,好的泛化能力+不过拟合于

论文阅读记录: Automatic Image Colorization sig16

sig论文阅读记录 Let there be Color!: Joint End-to-end Learning of Global and Local Image Priorsfor Automatic Image Colorization with Simultaneous Classification ( siggraph 2016 ) 论文简介 论文主页:http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/en/ 作者是来自Wa

论文阅读--Scalable Object Detection using Deep Neural Networks

Scalable Object Detection using Deep Neural Networks 作者: Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov 引用: Erhan, Dumitru, et al. "Scalable object detection using deep neural networks." Proceedings of the IEEE Confere

论文阅读 | FCOS: Fully Convolutional One-Stage Object Detection

论文阅读——FCOS: Fully Convolutional One-Stage Object Detection 概述 目前anchor-free大热,从DenseBoxes到CornerNet.ExtremeNet,以及最近的FSAF.FoveaBox,避免了复杂的超参数设计,而且具有很好的检测效果.本文作者提出了一种全卷积的单阶段目标检测算法,类似于语义分割的做法使用像素级预测.该检测框架简单有效,而且可以方便地用于其他任务. 简介 再啰嗦一下基于anchor的检测算法的缺陷: 1.检测

论文阅读:Adaptive NMS: Refining Pedestrian Detection in a Crowd

论文阅读:Adaptive NMS: Refining Pedestrian Detection in a Crowd 2019年04月11日 23:08:02 Kivee123 阅读数 836 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_37014750/article/details/89222334 Adaptive-NMS(CVPR 2019) 文章  又是一篇在NMS上

论文阅读:《Bag of Tricks for Efficient Text Classification》

论文阅读:<Bag of Tricks for Efficient Text Classification> 2018-04-25 11:22:29 卓寿杰_SoulJoy 阅读数 954更多 分类专栏: 深度学习 自然语言处理 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u011239443/article/details/80076720 https://blog.csdn.ne

论文阅读与模型复现——HAN

论文阅读论文链接:https://arxiv.org/pdf/1903.07293.pdf tensorflow版代码Github链接:https://github.com/Jhy1993/HAN 介绍视频:https://www.bilibili.com/video/av53418944/ 参考博客:https://blog.csdn.net/yyl424525/article/details/103804574 文中提出了一种新的基于注意力机制的异质图神经网络 Heterogeneous G

YOLO 论文阅读

YOLO(You Only Look Once)是一个流行的目标检测方法,和Faster RCNN等state of the art方法比起来,主打检测速度快.截止到目前为止(2017年2月初),YOLO已经发布了两个版本,在下文中分别称为YOLO V1和YOLO V2.YOLO V2的代码目前作为Darknet的一部分开源在GitHub.在这篇博客中,记录了阅读YOLO两个版本论文中的重点内容,并着重总结V2版本的改进. [email protected]/04: YOLO v3已经发布!可以