LibreOJ 6278. 数列分块入门 2 题解

题目链接:https://loj.ac/problem/6278

题目描述

给出一个长为 \(n\) 的数列,以及 \(n\) 个操作,操作涉及区间加法,询问区间内小于某个值 \(x\) 的元素个数。

输入格式

第一行输入一个数字 \(n\)。
第二行输入 \(n\) 个数字,第 \(i\) 个数字为 \(a_i\),以空格隔开。
接下来输入 \(n\) 行询问,每行输入四个数字 \(opt\)、\(l\)、\(r\)、\(c\),以空格隔开。
若 \(opt=0\),表示将位于 \([l,r]\) 的之间的数字都加 \(c\)。
若 \(opt=1\),表示询问 \([l,r]\) 中,小于 \(c^2\) 的数字的个数。

输出格式

对于每次询问,输出一行一个数字表示答案。

样例输入

4
1 2 2 3
0 1 3 1
1 1 3 2
1 1 4 1
1 2 3 2

样例输出

3
0
2

解题思路

同样还是按照每个块的大小为 \(\lfloor \sqrt{n} \rfloor\) 来进行分块。
这里我们同样用 \(p[i]\) 来表示 \(a[i]\) 所属的分块编号,用 \(v[k]\) 来表示第 \(k\) 个分块的累计更新值。
于此同时,我们再开一个数组 \(b[i]\) ,\(b\) 数组其实就是 \(a\) 数组的一个映射。那么它是怎么映射的呢?
我们假设 \(a[l..r]\) 属于同一个分块,且 \(a[l] 是这个分块的第一个元素,\)a[r$ 是这个分块的最后一个元素,那么 \(b[l..r]\) 就是 \(a[l..r]\) 排好序的结果,即:

  • \(b[l]\) 对应 \(a[l..r]\) 中最小的元素;
  • \(b[l+1]\) 对应 \(a[l..r]\) 中次小的元素;
  • ……
  • \(b[r]\) 对应 \(a[l..r]\) 中最大的元素。

一旦我们修改了某一个分块 \(k\) 中的部分元素,就需要将分块 \(k\) 对应的 \(b\) 数组的这段区间排序(对于分块 \(k\),它对应的坐标范围应该是 \([(k-1) \times m + 1, \min(k \times m, n)]\))。

修改操作:

  • 如果区间没有完整覆盖分块 \(k\),则遍历次分块中的每一个元素,令 \(a[i]+=c\);
  • 否则(完整覆盖分块 \(k\)),则令 \(v[k] += c\)。

查询操作:

  • 如果区间没有完整覆盖分块 \(k\),则遍历次分块中的每一个元素,判断 \(a[i] \lt c^2-v[p[i]]\) 是否成立;
  • 否则(完整覆盖分块 \(k\)),因为 \(b\) 数组具有单调性,对分块 \(k\) 包含的区间范围内的 \(b[l..r]\) 进行二分获取有多少元素 \(b[i] \lt c^2-v[k]\)。

最后将答案汇总。

每次修改的时间复杂度为 \(O( \sqrt{n} )\);
每次查询的时间复杂度为 \(O( \sqrt{n} \times \sqrt{ \sqrt{n} } ) = O(n^{ \frac 34 })\) ,

因为总共有有 \(n\) 次操作,所以整的时间复杂度为 \(O(n \times n^{ \frac 34 })\) 。

实现代码如下:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 50050;
int n, m, a[maxn], b[maxn], p[maxn], v[300], op, l, r, c;
void update_part(int pid) {
    int i1 = (pid-1)*m+1, i2 = min(pid*m+1, n+1); // 一定要注意边界条件,我在这里RE了好久,因为最后一个分块长度不一定是m
    for (int i = i1; i < i2; i ++)
        b[i] = a[i];
    sort(b+i1, b+i2);
}
void add(int l, int r, int c) {
    if (p[l] == p[r]) { // 说明在同一个分块,直接更新
        for (int i = l; i <= r; i ++) a[i] += c;
        update_part(p[l]);
        return;
    }
    if (l % m != 1) {    // 说明l不是分块p[l]的第一个元素
        for (int i = l; p[i]==p[l]; i ++) {
            a[i] += c;
        }
        update_part(p[l]);
    }
    else v[p[l]] += c;
    if (r % m != 0) { // 说明r不是分块p[r]的最后一个元素
        for (int i = r; p[i]==p[r]; i --)
            a[i] += c;
        update_part(p[r]);
    }
    else v[p[r]] += c;
    for (int i = p[l]+1; i < p[r]; i ++)
        v[i] += c;
}
int count_part(int pid, int c) {
    int i1 = (pid-1)*m+1, i2 = min(pid*m+1, n+1);
    int cnt = lower_bound(b+i1, b+i2, c*c-v[pid]) - (b+i1);
    return cnt;
}
int get_count(int l, int r, int c) {
    int cnt = 0;
    if (p[l] == p[r]) { // 说明在同一个分块,直接更新
        for (int i = l; i <= r; i ++)
            if (a[i]+v[p[i]] < c*c)
                cnt ++;
        return cnt;
    }
    if (l % m != 1) {    // 说明l不是分块p[l]的第一个元素
        for (int i = l; p[i]==p[l]; i ++)
            if (a[i]+v[p[i]] < c*c)
                cnt ++;
    }
    else cnt += count_part(p[l], c);
    if (r % m != 0) { // 说明r不是分块p[r]的最后一个元素
        for (int i = r; p[i]==p[r]; i --)
            if (a[i]+v[p[i]] < c*c)
                cnt ++;
    }
    else cnt += count_part(p[r], c);
    for (int i = p[l]+1; i < p[r]; i ++)
        cnt += count_part(i, c);
    return cnt;
}
int main() {
    scanf("%d", &n);
    m = sqrt(n);
    for (int i = 1; i <= n; i ++) p[i] = (i-1)/m + 1;
    for (int i = 1; i <= n; i ++) scanf("%d", &a[i]);
    for (int i = m; i <= n; i += m) update_part(p[i]);    // 初始化所有完整的块
    for (int i = 0; i < n; i ++) {
        scanf("%d%d%d%d", &op, &l, &r, &c);
        if (op == 0) add(l, r, c);
        else printf("%d\n", get_count(l, r, c));
    }
    return 0;
}

原文地址:https://www.cnblogs.com/quanjun/p/12112578.html

时间: 2024-10-09 09:58:13

LibreOJ 6278. 数列分块入门 2 题解的相关文章

LibreOJ6279. 数列分块入门 3 题解

题目链接:https://loj.ac/problem/6279 题目描述 给出一个长为 \(n\) 的数列,以及 \(n\) 个操作,操作涉及区间加法,询问区间内小于某个值 \(x\) 的前驱(比其小的最大元素). 输入格式 第一行输入一个数字 \(n\). 第二行输入 \(n\) 个数字,第 \(i\) 个数字为 \(a_i\),以空格隔开. 接下来输入 \(n\) 行询问,每行输入四个数字 \(opt\).\(l\).\(r\).\(c\),以空格隔开. 若 \(opt=0\),表示将位于

LOJ#6278. 数列分块入门 2

内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计讨论测试数据 题目描述 给出一个长为 nnn 的数列,以及 nnn 个操作,操作涉及区间加法,询问区间内小于某个值 xxx 的元素个数. 输入格式 第一行输入一个数字 nnn. 第二行输入 nnn 个数字,第 i 个数字为 aia_ia?i??,以空格隔开. 接下来输入 nnn 行询问,每行输入四个数字 opt\mathrm{opt}opt.lll.rrr.ccc,

LiberOJ 6278 数列分块入门 2(分块)

 题解:非常高妙的分块,每个块对应一个桶,桶内元素全部sort过,加值时,对于零散块O(sqrt(n))暴力修改,然后暴力重构桶.对于大块直接整块加.查询时对于非完整块O(sqrt(n))暴力遍历.对于完整的大块用lower_bound或者手写二分log(sqrt(n)查找,总复杂度O(n*sqrt(n)*log(sqrt(n))) 代码如下: #include<cmath> #include<vector> #include<cstdio> #include<c

LibreOJ 6277. 数列分块入门 1

题目链接:https://loj.ac/problem/6277 参考博客:https://www.cnblogs.com/stxy-ferryman/p/8547731.html 两个操作,区间增加和单点查询. 思路:将整个数组按照block(block=sqrt(n))分成许多小块,lump[i]表示点i所在的块,tag[i]表示编号为i的块的增加值,如果是进行区间增加操作,我们一般可以把区间[l,r]分成三个部分,左边不完整的区间(只含有某块中的部分点),中间完整的区间(含有一些块的所有点

LibreOJ 6282. 数列分块入门 6

题目链接:https://loj.ac/problem/6282 参考博客:http://www.cnblogs.com/stxy-ferryman/p/8560551.html 这里如果用数组的话元素右移肯定会超时,如果用链表查询时O(n),n次询问就是O(n^2),然后刚刚又瞟了几眼别人的博客,用分块的话主要好像是有查询位置,插入元素,重构三个操作,查询就是找我们要的这个点在第几层的第几个位置(用的是vector),大概是√n的时间复杂度,因为分成了√n块:然后找到位置之后就可以插入,也是√

LibreOJ 6285. 数列分块入门 9

题目链接:https://loj.ac/problem/6285 其实一看到是离线,我就想用莫队算法来做,对所有询问进行分块,但是左右边界移动的时候,不会同时更新数字最多的数,只是后面线性的扫了一遍,所以还有百分之12的样例过不了. 然后看了别人分块,是先对所有零散的数字编号(这个应该是所谓离散化),用vector[i]存储编号为i的数字所有出现的位置,因为从0到n,所以里面的值是升序的,我们先对块与块之间数字最多的数进行计算(预处理),在查询的时候查询[l,r]之间的数,把区间分成三块,左边不

数列分块入门1-9 LibreOJ

数列分块入门1-9 LibreOJ 我也不知道为什么一个大二的ACM选手没学分块. 我怎么记得大一的时候,学长教给我的分块就只有 block 和 num 两个变量来着...好吧,应该是我没认真学.正好前两天朋友给学弟开课,乘机去蹭了一节课.然后...我还是不会哇,菜的一逼塌糊涂. 还是卿学姐好哇,多听几遍,睡得贼香. 分块原理 分块嘛,其实就是优雅的暴力,和莫队(不会)有点异曲同工的赶脚.通过将数组分成小块以降低复杂度. 通常情况下: 每个块的大小(block)为 \(\sqrt{n}\) 块数

loj 6278 6279 数列分块入门 2 3

参考:「分块」数列分块入门1 – 9 by hzwer 2 Description 给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及区间加法,询问区间内小于某个值\(x\)的元素个数. 思路 每个块内保持升序排列. 则块外暴力统计,块内二分查找分界点. 一些注意点,如: 要记录下标: 块外暴力修改完之后需要再排序: 在块内二分查找的值是\(c-tag[i]\)而非\(c\). Code #include <bits/stdc++.h> #define maxn 50010 #def

loj 6277 6280 数列分块入门 1 4

参考:「分块」数列分块入门1 – 9 by hzwer 1 Description 给出一个长为\(n\)的数列,以及\(n\)个操作,操作涉及区间加法,单点查值. 思路 用\(tag\)记录每个块整体的增量. Code #include <bits/stdc++.h> #define maxn 50010 #define F(i, a, b) for (int i = (a); i < (b); ++i) #define F2(i, a, b) for (int i = (a); i