[ch05-00] 多变量线性回归问题

系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI
点击star加星不要吝啬,星越多笔者越努力。

第5章 多入单出的单层神经网络

5.0 多变量线性回归问题

5.0.1 提出问题

问题:在北京通州,距离通州区中心15公里的一套93平米的房子,大概是多少钱?

房价预测问题,成为了机器学习的一个入门话题,著名的波士顿的房价数据及相关的比赛已经很多了,但是美国的房子都是独栋的,前院后院停车库游泳池等等参数非常多,初学者可能理解起来有困难。我们不妨用简化版的北京通州的房价来举例,感受一下房价预测的过程。

影响北京通州房价的因素有很多,居住面积、地理位置、朝向、学区房、周边设施、建筑年份等等,其中,面积和地理位置是两个比较重要的因素。地理位置信息一般采用经纬度方式表示,但是经纬度是两个特征值,联合起来才有意义,因此,我们把它转换成了到通州区中心的距离。

我们有1000个样本,每个样本有两个特征值,一个标签值,示例如表5-1。

表5-1 样本数据

样本序号 地理位置 居住面积 价格(万元)
1 10.06 60 302.86
2 15.47 74 393.04
3 18.66 46 270.67
4 5.20 77 450.59
... ... ... ...
  • 特征值1 - 地理位置,统计得到:

    • 最大值:21.96公里
    • 最小值:2.02公里
    • 平均值:12.13公里
  • 特征值2 - 房屋面积,统计得到:
    • 最大值:119平米
    • 最小值:40平米
    • 平均值:78.9平米
  • 标签值 - 房价,单位为百万元:
    • 最大值:674.37
    • 最小值:181.38
    • 平均值:420.64

这个数据是三维的,所以可以用两个特征值作为x和y,用标签值作为z,在xyz坐标中展示如表5-2。

表5-2 样本在三维空间的可视化

正向 侧向

从正向看,很像一块草坪,似乎是一个平面。再从侧向看,和第4章中的直线拟合数据很像。所以,对于这种三维的线性拟合,我们可以把它想象成为拟合一个平面,这个平面会位于这块“草坪”的中位,把“草坪”分割成上下两块更薄的“草坪”,最终使得所有样本点到这个平面的距离的平方和最小。

5.0.2 多元线性回归模型

由于表中可能没有恰好符合15公里、93平米条件的数据,因此我们需要根据1000个样本值来建立一个模型,来解决预测问题。

通过图示,我们基本可以确定这个问题是个线性回归问题,而且是典型的多元线性回归,即包括两个或两个以上自变量的回归。多元线性回归的函数模型如下:

\[y=a_0+a_1x_1+a_2x_2+\dots+a_kx_k\]

具体化到房价预测问题,上面的公式可以简化成:

\[
z = x_1 \cdot w_1 + x_2 \cdot w_2 + b
\]

抛开本例的房价问题,对于一般的应用问题,建立多元线性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是:

  1. 自变量对因变量必须有显著的影响,并呈密切的线性相关;
  2. 自变量与因变量之间的线性相关必须是真实的,而不是形式上的;
  3. 自变量之间应具有一定的互斥性,即自变量之间的相关程度不应高于自变量与因变量之因的相关程度;
  4. 自变量应具有完整的统计数据,其预测值容易确定。

5.0.3 解决方案

如果用传统的数学方法解决这个问题,我们可以使用正规方程,从而可以得到数学解析解,然后再使用神经网络方式来求得近似解,从而比较两者的精度,再进一步调试神经网络的参数,达到学习的目的。

我们不妨先把两种方式在这里做一个对比,读者阅读并运行代码,得到结果后,再回到这里来仔细体会表5-3中的比较项。

表5-3 两种方法的比较

方法 正规方程 梯度下降
原理 几次矩阵运算 多次迭代
特殊要求 \(X^TX\)的逆矩阵存在 需要确定学习率
复杂度 \(O(n^3)\) \(O(n^2)\)
适用样本数 \(m \lt 10000\) \(m \ge 10000\)

原文地址:https://www.cnblogs.com/woodyh5/p/12021704.html

时间: 2024-10-09 07:09:41

[ch05-00] 多变量线性回归问题的相关文章

机器学习——多变量线性回归

[一.多变量线性回归模型] 多变量线性回归是指输入为多维特征的情况,例如: 在上图中可看出房子的价格price由四个变量(size.number of bedrooms.number of floors .age of home)决定,为了能够预测给定条件(四个变量)下的房子的价格(y),我们需要建立相应的线性回归模型. 假设有n个变量,则相应的多变量线性回归模型如下: 注意上图中的x是指一个训练样本,即每个训练样本都是一个(n+1)维向量(包含附加的x0=1) [二.代价函数] 多变量线性回归

Ng第四课:多变量线性回归(Linear Regression with Multiple Variables)

4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性(可选) 4.1  多维特征 目前为止,探讨了单变量/特征的回归模型,现在对房价模型增加更多的特征 增添更多特征后,引入一系列新的注释: n  代表特征的数量 代表第 i  个训练实例,是特征矩阵中的第 i 行,是一个向量(vector).    (图中给转置了) 代表特征矩阵中第 i 行的第j 个

Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine

Machine Learning笔记(三) 多变量线性回归

Machine Learning笔记(三) 多变量线性回归 注:本文内容资源来自 Andrew Ng 在 Coursera上的 Machine Learning 课程,在此向 Andrew Ng 致敬. 一.多特征(Multiple Features) 笔记(二)中所讨论的房价问题,只考虑了房屋尺寸(Size)一个特征,如图所示: 这样只有单一特征的数据,往往难以帮助我们准确的预测房价走势.因此,考虑采集多个特征的数据值,往往能提升预测效果.例如,选取如下4个特征作为输入值时的情况: 对一些概念

【stanford 机器学习】学习笔记(2)--多变量线性回归(Linear Regression with Multiple Variables)

课程来自斯坦福大学吴恩达教授 machine learning: https://www.coursera.org/learn/machine-learning/home/welcome 多变量线性回归主要包括以下部分: 1) Multiple features(多维特征) 2) Gradient descent for multiple variables(梯度下降在多变量线性回归中的应用) 3) Gradient descent in practice I: Feature Scaling(

机器学习:多变量线性回归

************************************** 注:本系列博客是博主学习Stanford大学 Andrew Ng 教授的<机器学习>课程笔记.博主深感学过课程后,不进行总结很容易遗忘,根据课程加上自己对不明白问题的补充遂有此系列博客.本系列博客包括线性回归.逻辑回归.神经网络.机器学习的应用和系统设计.支持向量机.聚类.将维.异常检测.推荐系统及大规模机器学习等内容. ************************************** 多变量线性回归 多

机器学习(3)——多变量线性回归

[一.多变量线性回归模型] 多变量线性回归是指输入为多维特征的情况.比如: 在上图中可看出房子的价格price由四个变量(size.number of bedrooms.number of floors .age of home)决定.为了能够预測给定条件(四个变量)下的房子的价格(y),我们须要建立对应的线性回归模型. 如果有n个变量,则对应的多变量线性回归模型例如以下: 注意上图中的x是指一个训练样本,即每一个训练样本都是一个(n+1)维向量(包括附加的x0=1) [二.代价函数] 多变量线

deep learning 练习 多变量线性回归

多变量线性回归(Multivariate Linear Regression) 作业来自链接:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex3/ex3.html 这次的多变量线性回归问题,输入特征向量X是二维的,一个维度表示房间面积,一个维度表示房间数量,输出Y是房子的价格. 这一次试着自己找了一下合适的学习速率和迭代次数 合适的学习速率通过看损失

Stanford公开课机器学习---3.多变量线性回归 (Linear Regression with multiple variable)

3.多变量线性回归 (Linear Regression with multiple variable) 3.1 多维特征(Multiple Features) n 代表特征的数量 x(i)代表第 i 个训练实例,是特征矩阵中的第 i 行,是一个向量(vector). x(i)j代表特征矩阵中第 i 行的第 j 个特征,也就是第 i 个训练实例的第 j 个特征. 多维线性方程: hθ=θ0+θ1x+θ2x+...+θnx 这个公式中有 n+1 个参数和 n 个变量,为了使得公式能够简化一些,引入

Machine Learning_Ng 第四讲 多变量线性回归

在第四讲中,主要学习了多变量线性回归(Linear Regression with Multiple Variables)的多维特征.多变量梯度下降.特征缩放.特征和多项式回归以及正规方程等. # 多维特征(Multiple Features) 为房价模型增加更多的特征,如房间楼层数等,则构成了一个含有多个变量的模型. 假设$h_\theta(x)=\theta_0+\theta_1*x_1+\theta_2*x_2+-+\theta_n*x_n$, 设x_0=1,则存在$h_\theta(x)