神经网络编程入门

转自http://www.cnblogs.com/heaad/archive/2011/03/07/1976443.html

本文主要内容包括: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 。

0节、引例 

本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set  找到。这里简要介绍一下Iris数据集:

有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。

  一种解决方法是用已有的数据训练一个神经网络用作分类器。

  如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。

第一节、神经网络基本原理 

1. 人工神经元( Artificial Neuron )模型 

人工神经元是神经网络的基本元素,其原理可以用下图表示:

图1. 人工神经元模型

图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:

  图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为:

  若用X表示输入向量,用W表示权重向量,即:

X = [ x0 , x1 , x2 , ....... , xn ]

  则神经元的输出可以表示为向量相乘的形式:

若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。

图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )

2. 常用激活函数 

激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。

(1) 线性函数 ( Liner Function )

(2) 斜面函数 ( Ramp Function )

(3) 阈值函数 ( Threshold Function )

以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。

(4) S形函数 ( Sigmoid Function )

  该函数的导函数:

(5) 双极S形函数 

  该函数的导函数:

  S形函数与双极S形函数的图像如下:

图3. S形函数与双极S形函数图像

  双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。

  由于S形函数与双极S形函数都是可导的(导函数是连续函数),因此适合用在BP神经网络中。(BP算法要求激活函数可导)

3. 神经网络模型 

神经网络是由大量的神经元互联而构成的网络。根据网络中神经元的互联方式,常见网络结构主要可以分为下面3类:

(1) 前馈神经网络 ( Feedforward Neural Networks )

前馈网络也称前向网络。这种网络只在训练过程会有反馈信号,而在分类过程中数据只能向前传送,直到到达输出层,层间没有向后的反馈信号,因此被称为前馈网络。感知机( perceptron)与BP神经网络就属于前馈网络。

图4 中是一个3层的前馈神经网络,其中第一层是输入单元,第二层称为隐含层,第三层称为输出层(输入单元不是神经元,因此图中有2层神经元)。

图4. 前馈神经网络

  对于一个3层的前馈神经网络N,若用X表示网络的输入向量,W1~W3表示网络各层的连接权向量,F1~F3表示神经网络3层的激活函数。

  那么神经网络的第一层神经元的输出为:

O1 = F1( XW1 )

  第二层的输出为:

O2 = F2 ( F1( XW1 ) W2 )

  输出层的输出为:

O3 = F3( F2 ( F1( XW1 ) W2 ) W3 )

若激活函数F1~F3都选用线性函数,那么神经网络的输出O3将是输入X的线性函数。因此,若要做高次函数的逼近就应该选用适当的非线性函数作为激活函数。

(2) 反馈神经网络 ( Feedback Neural Networks )

反馈型神经网络是一种从输出到输入具有反馈连接的神经网络,其结构比前馈网络要复杂得多。典型的反馈型神经网络有:Elman网络和Hopfield网络。

图5. 反馈神经网络

(3) 自组织网络 ( SOM ,Self-Organizing Neural Networks )

自组织神经网络是一种无导师学习网络。它通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。

图6. 自组织网络

4. 神经网络工作方式 

神经网络运作过程分为学习和工作两种状态。

(1)神经网络的学习状态 

网络的学习主要是指使用学习算法来调整神经元间的联接权,使得网络输出更符合实际。学习算法分为有导师学习( Supervised Learning )无导师学习( Unsupervised Learning )两类。

有导师学习算法将一组训练集 ( training set )送入网络,根据网络的实际输出与期望输出间的差别来调整连接权。有导师学习算法的主要步骤包括:

1)  从样本集合中取一个样本(Ai,Bi);

2)  计算网络的实际输出O;

3)  求D=Bi-O;

4)  根据D调整权矩阵W;

5) 对每个样本重复上述过程,直到对整个样本集来说,误差不超过规定范围。

  BP算法就是一种出色的有导师学习算法。

无导师学习抽取样本集合中蕴含的统计特性,并以神经元之间的联接权的形式存于网络中。

Hebb学习律是一种经典的无导师学习算法。

(2) 神经网络的工作状态 

神经元间的连接权不变,神经网络作为分类器、预测器等使用。

  下面简要介绍一下Hebb学习率与Delta学习规则 。

(3) 无导师学习算法:Hebb学习率 

  Hebb算法核心思想是,当两个神经元同时处于激发状态时两者间的连接权会被加强,否则被减弱。 

为了理解Hebb算法,有必要简单介绍一下条件反射实验。巴甫洛夫的条件反射实验:每次给狗喂食前都先响铃,时间一长,狗就会将铃声和食物联系起来。以后如果响铃但是不给食物,狗也会流口水。

图7. 巴甫洛夫的条件反射实验

  受该实验的启发,Hebb的理论认为在同一时间被激发的神经元间的联系会被强化。比如,铃声响时一个神经元被激发,在同一时间食物的出现会激发附近的另一个神经元,那么这两个神经元间的联系就会强化,从而记住这两个事物之间存在着联系。相反,如果两个神经元总是不能同步激发,那么它们间的联系将会越来越弱。

  Hebb学习律可表示为:

其中wij表示神经元j到神经元i的连接权,yi与yj为两个神经元的输出,a是表示学习速度的常数。若yi与yj同时被激活,即yi与yj同时为正,那么Wij将增大。若yi被激活,而yj处于抑制状态,即yi为正yj为负,那么Wij将变小。

(4) 有导师学习算法:Delta学习规则

  Delta学习规则是一种简单的有导师学习算法,该算法根据神经元的实际输出与期望输出差别来调整连接权,其数学表示如下:

其中Wij表示神经元j到神经元i的连接权,di是神经元i的期望输出,yi是神经元i的实际输出,xj表示神经元j状态,若神经元j处于激活态则xj为1,若处于抑制状态则xj为0或-1(根据激活函数而定)。a是表示学习速度的常数。假设xi为1,若di比yi大,那么Wij将增大,若di比yi小,那么Wij将变小。

Delta规则简单讲来就是:若神经元实际输出比期望输出大,则减小所有输入为正的连接的权重,增大所有输入为负的连接的权重。反之,若神经元实际输出比期望输出小,则增大所有输入为正的连接的权重,减小所有输入为负的连接的权重。这个增大或减小的幅度就根据上面的式子来计算。

(5)有导师学习算法:BP算法 

  采用BP学习算法的前馈型神经网络通常被称为BP网络。

图8. 三层BP神经网络结构

  BP网络具有很强的非线性映射能力,一个3层BP神经网络能够实现对任意非线性函数进行逼近(根据Kolrnogorov定理)。一个典型的3层BP神经网络模型如图7所示。

  BP网络的学习算法占篇幅较大,我打算在下一篇文章中介绍。

第二节、神经网络实现 

 

1. 数据预处理 

在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。下面简要介绍归一化处理的原理与方法。

(1) 什么是归一化? 

数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9) 。

(2) 为什么要归一化处理? 

<1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。

<2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。

<3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。

<4>S形激活函数在(0,1)区间以外区域很平缓,区分度太小。例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。

(3) 归一化算法 

  一种简单而快速的归一化算法是线性转换算法。线性转换算法常见有两种形式:

<1>

y = ( x - min )/( max - min )

  其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。上式将数据归一化到 [ 0 , 1 ]区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。

<2>

y = 2 * ( x - min ) / ( max - min ) - 1

这条公式将数据归一化到 [ -1 , 1 ] 区间。当激活函数采用双极S形函数(值域为(-1,1))时这条式子适用。

(4) Matlab数据归一化处理函数 

  Matlab中归一化处理数据可以采用premnmx , postmnmx , tramnmx 这3个函数。

<1> premnmx

语法:[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t)

参数:

pn: p矩阵按行归一化后的矩阵

minp,maxp:p矩阵每一行的最小值,最大值

tn:t矩阵按行归一化后的矩阵

mint,maxt:t矩阵每一行的最小值,最大值

作用:将矩阵p,t归一化到[-1,1] ,主要用于归一化处理训练数据集。

<2> tramnmx

语法:[pn] = tramnmx(p,minp,maxp)

参数:

minp,maxp:premnmx函数计算的矩阵的最小,最大值

pn:归一化后的矩阵

作用:主要用于归一化处理待分类的输入数据。

<3> postmnmx

语法: [p,t] = postmnmx(pn,minp,maxp,tn,mint,maxt)

参数:

minp,maxp:premnmx函数计算的p矩阵每行的最小值,最大值

mint,maxt:premnmx函数计算的t矩阵每行的最小值,最大值

作用:将矩阵pn,tn映射回归一化处理前的范围。postmnmx函数主要用于将神经网络的输出结果映射回归一化前的数据范围。

2. 使用Matlab实现神经网络 

使用Matlab建立前馈神经网络主要会使用到下面3个函数:

newff :前馈网络创建函数

train:训练一个神经网络

sim :使用网络进行仿真

下面简要介绍这3个函数的用法。

(1) newff函数

<1>newff函数语法 

newff函数参数列表有很多的可选参数,具体可以参考Matlab的帮助文档,这里介绍newff函数的一种简单的形式。

语法:net = newff ( A, B, {C} ,‘trainFun’)

参数:

A:一个n×2的矩阵,第i行元素为输入信号xi的最小值和最大值;

B:一个k维行向量,其元素为网络中各层节点数;

C:一个k维字符串行向量,每一分量为对应层神经元的激活函数

trainFun :为学习规则采用的训练算法

<2>常用的激活函数

  常用的激活函数有:

  a) 线性函数 (Linear transfer function)

f(x) = x

  该函数的字符串为’purelin’。

 

b) 对数S形转移函数( Logarithmic sigmoid transfer function )

该函数的字符串为’logsig’。

c) 双曲正切S形函数 (Hyperbolic tangent sigmoid transfer function )

  也就是上面所提到的双极S形函数。

  该函数的字符串为’ tansig’。

  Matlab的安装目录下的toolbox\nnet\nnet\nntransfer子目录中有所有激活函数的定义说明。

<3>常见的训练函数

常见的训练函数有:

traingd :梯度下降BP训练函数(Gradient descent backpropagation)

traingdx :梯度下降自适应学习率训练函数

<4>网络配置参数

一些重要的网络配置参数如下:

net.trainparam.goal  :神经网络训练的目标误差

net.trainparam.show   : 显示中间结果的周期

net.trainparam.epochs  :最大迭代次数

net.trainParam.lr    : 学习率

(2) train函数

网络训练学习函数。

语法:[ net, tr, Y1, E ]  = train( net, X, Y )

参数:

X:网络实际输入

Y:网络应有输出

tr:训练跟踪信息

Y1:网络实际输出

E:误差矩阵

(3) sim函数

语法:Y=sim(net,X)

参数:

net:网络

X:输入给网络的K×N矩阵,其中K为网络输入个数,N为数据样本数

Y:输出矩阵Q×N,其中Q为网络输出个数

(4) Matlab BP网络实例 

我将Iris数据集分为2组,每组各75个样本,每组中每种花各有25个样本。其中一组作为以上程序的训练样本,另外一组作为检验样本。为了方便训练,将3类花分别编号为1,2,3 。

  使用这些数据训练一个4输入(分别对应4个特征),3输出(分别对应该样本属于某一品种的可能性大小)的前向网络。

Matlab程序如下:

%读取训练数据[f1,f2,f3,f4,class] = textread(‘trainData.txt‘ , ‘%f%f%f%f%f‘,150);

%特征值归一化[input,minI,maxI] = premnmx( [f1 , f2 , f3 , f4 ]‘)  ;

%构造输出矩阵s = length( class) ;output = zeros( s , 3  ) ;for i = 1 : s    output( i , class( i )  ) = 1 ;end

%创建神经网络net = newff( minmax(input) , [10 3] , { ‘logsig‘ ‘purelin‘ } , ‘traingdx‘ ) ; 

%设置训练参数net.trainparam.show = 50 ;net.trainparam.epochs = 500 ;net.trainparam.goal = 0.01 ;net.trainParam.lr = 0.01 ;

%开始训练net = train( net, input , output‘ ) ;

%读取测试数据[t1 t2 t3 t4 c] = textread(‘testData.txt‘ , ‘%f%f%f%f%f‘,150);

%测试数据归一化testInput = tramnmx ( [t1,t2,t3,t4]‘ , minI, maxI ) ;

%仿真Y = sim( net , testInput ) 

%统计识别正确率[s1 , s2] = size( Y ) ;hitNum = 0 ;for i = 1 : s2    [m , Index] = max( Y( : ,  i ) ) ;    if( Index  == c(i)   )         hitNum = hitNum + 1 ;     endendsprintf(‘识别率是 %3.3f%%‘,100 * hitNum / s2 )

  以上程序的识别率稳定在95%左右,训练100次左右达到收敛,训练曲线如下图所示:

图9. 训练性能表现

(5)参数设置对神经网络性能的影响 

我在实验中通过调整隐含层节点数,选择不通过的激活函数,设定不同的学习率,

<1>隐含层节点个数 

  隐含层节点的个数对于识别率的影响并不大,但是节点个数过多会增加运算量,使得训练较慢。

<2>激活函数的选择 

激活函数无论对于识别率或收敛速度都有显著的影响。在逼近高次曲线时,S形函数精度比线性函数要高得多,但计算量也要大得多。

<3>学习率的选择 

学习率影响着网络收敛的速度,以及网络能否收敛。学习率设置偏小可以保证网络收敛,但是收敛较慢。相反,学习率设置偏大则有可能使网络训练不收敛,影响识别效果。

3. 使用AForge.NET实现神经网络 

(1) AForge.NET简介 

AForge.NET是一个C#实现的面向人工智能、计算机视觉等领域的开源架构。AForge.NET源代码下的Neuro目录包含一个神经网络的类库。

AForge.NET主页:http://www.aforgenet.com/

AForge.NET代码下载:http://code.google.com/p/aforge/

Aforge.Neuro工程的类图如下:

图10. AForge.Neuro类库类图

下面介绍图9中的几个基本的类:

Neuron — 神经元的抽象基类

Layer — 层的抽象基类,由多个神经元组成

Network —神经网络的抽象基类,由多个层(Layer)组成

IActivationFunction - 激活函数(activation function)的接口

IUnsupervisedLearning - 无导师学习(unsupervised learning)算法的接口ISupervisedLearning - 有导师学习(supervised learning)算法的接口

(2)使用Aforge建立BP神经网络 

使用AForge建立BP神经网络会用到下面的几个类:

<1>  SigmoidFunction : S形神经网络

  构造函数:public SigmoidFunction( double alpha )

   参数alpha决定S形函数的陡峭程度。

<2>  ActivationNetwork :神经网络类

  构造函数:

  public ActivationNetwork( IActivationFunction function, int inputsCount, params int[] neuronsCount )

: base( inputsCount, neuronsCount.Length )

  public virtual double[] Compute( double[] input )

参数意义:

inputsCount:输入个数

neuronsCount :表示各层神经元个数

<3>  BackPropagationLearning:BP学习算法

构造函数:

public BackPropagationLearning( ActivationNetwork network )

参数意义:

network :要训练的神经网络对象

BackPropagationLearning类需要用户设置的属性有下面2个:

learningRate :学习率

momentum :冲量因子

下面给出一个用AForge构建BP网络的代码。

// 创建一个多层神经网络,采用S形激活函数,各层分别有4,5,3个神经元

//(其中4是输入个数,3是输出个数,5是中间层结点个数)
ActivationNetwork network = new ActivationNetwork(
new SigmoidFunction(2), 4, 5, 3);

// 创建训练算法对象
BackPropagationLearning teacher = new
BackPropagationLearning(network);

// 设置BP算法的学习率与冲量系数
teacher.LearningRate = 0.1;
teacher.Momentum = 0;

int iteration = 1 ;

// 迭代训练500次
while( iteration < 500 )
{
teacher.RunEpoch( trainInput , trainOutput ) ;
++iteration ;
}

//使用训练出来的神经网络来分类,t为输入数据向量
network.Compute(t)[0]

改程序对Iris 数据进行分类,识别率可达97%左右 。

点击下载源代码

  文章来自:http://www.cnblogs.com/heaad/

  转载请保留出处,thx!

参考文献 

[1] Andrew Kirillov. Neural Networks on C#. [Online].

http://www.codeproject.com/KB/recipes/aforge_neuro.aspx  2006.10

[2] Sacha Barber. AI : Neural Network for beginners. [Online].

http://www.codeproject.com/KB/recipes/NeuralNetwork_1.aspx  2007.5

[3] Richard O. Duda, Peter E. Hart and David G. Stork. 模式分类. 机械工业出版社. 2010.4

[4] Wikipedia. Iris flower data set. [Online].

http://en.wikipedia.org/wiki/Iris_flower_data_set

时间: 2024-11-03 22:29:17

神经网络编程入门的相关文章

《鸡啄米C++编程入门系列》系列技术文章整理收藏

<鸡啄米C++编程入门系列>系列技术文章整理收藏 收藏整理鸡啄米C++编程入门系列文章,供个人和网友学习C++时参考 1鸡啄米:C++编程入门系列之前言 2鸡啄米:C++编程入门系列之一(进制数) 3鸡啄米:C++编程入门系列之二(原码.反码与补码) 4鸡啄米:C++编程入门系列之三(VS2010的使用介绍) 5鸡啄米:C++编程入门系列之四(数据类型) 6鸡啄米:C++编程入门系列之五(运算符和表达式) 7鸡啄米:C++编程入门系列之六(算法的基本控制结构之选择结构) 8鸡啄米:C++编程入

编程入门指南

前言 如今编程成为了一个越来越重要的「技能」:作为设计师,懂一些编程可能会帮你更好地理解自己的工作内容:作为创业者,技术创始人的身份则会让你的很多工作显得更容易.而作为刚想入门的新手,面对眼前海量的信息,或许根本不知道从哪里开始:入门轻松度过初级材料的学习后,发现学习越来越困难,陡峭的学习曲线又让你望而却步:你知道如何在页面上打印输出一些文本行,但是你不知道何时该进行一个真正的有用的项目:你不清楚自己还有哪些不知道的东西,你甚至搞不清下一步该学什么. 这篇文章的内容对此不仅会有一些方向性的建议,

CUDA C编程入门-介绍

CUDA C编程入门-介绍 1.1.从图形处理到通用并行计算 在实时.高清3D图形的巨大市场需求的驱动下,可编程的图形处理单元或者GPU发展成拥有巨大计算能力的和非常高的内存带宽的高度并行的.多线程的.多核处理器.如图1和图2所示. 图 1 CPU和GPU每秒的浮点计算次数 图 2 CPU和GPU的内存带宽 在CPU和GPU之间在浮点计算能力上的差异的原因是GPU专做密集型计算和高度并行计算-恰好是图形渲染做的-因此设计成这样,更多的晶体管用于数据处理而不是数据缓存和流控制,如图3所示. 图 3

Android jni 编程入门

本文将介绍如何使用eclipse和ndk-build来编写一个基于Android4.4版本的包含有.so动态库的安卓程序. 前提是已经安装和配置好了诸如SDK,NDK等编译环境.下面开始编程! 1 程序逻辑 我们要编写的程序包含两部分:java部分--负责界面和调用JNI native函数:JNI native 部分--负责native函数的具体实现(本文使用C语言). native 函数伪代码如下: ? 1 2 3 4 5 6 7 8 /* funtion: 传入两个整形变量,计算他们之和 r

【转载】COM编程入门不得不看的文章 :第一部分 什么是COM,如何使用COM

原文:COM编程入门不得不看的文章 :第一部分 什么是COM,如何使用COM 原文:http://www.codeproject.com/Articles/633/Introduction-to-COM-What-It-Is-and-How-to-Use-It 本文的目的是为刚刚接触COM的程序员提供编程指南,并帮助他们理解COM的基本概念.内容包括COM规范简介,重要的COM术语以及如何重用现有的COM组件.本文不包括如何编写自己的COM对象和接口. COM即组件对象模型,是Component

Linux bash编程入门

一.bash编程入门 编程语言: 编译型语言:编译器  c,c++ 解释型语言:解释器 解释器可独立运行 变量:保持数据的载体,命令的内存空间 本地变量: 环境变量 局部变量: 位置参数变量:$1,$2..., 特殊变量: $0 当前脚本的名字 shell脚本:shebang #!/bin/bash         #解释此脚本的shell路径,内核调用对应的解释器来解释脚本 #Description: #Version: #Author: #License: #Datetime: 脚本文件,其

Linux下的shell编程入门

通常情况下,我们从命令行输入命令每输入一次就能够得到系统的一次响应.一旦需要我们一个接着一个的输入命令而最后才得到结果的时候,这样的做法显然就没有效率.要达到这样的目的,通常我们利用shell程序或者shell脚本来实现. 一.简介 Shell编程有很多类似C语言和其他程序语言的特征,但是又没有编程语言那样复杂.Shell程序就是放在一个文件中的一系列Linux命令和实用程序,在执行的时候,通过Linux一个接着一个地解释和执行每个命令. 下面我们来看一个简单的shell程序: 1.首先建立一个

CUDA C编程入门

CUDA C编程入门系列文章是CUDA C Programming guide的翻译,同时也会加入一些个人的理解.由于刚刚接触CUDA编程,对此领域不是很熟悉,翻译的质量和正确与否不能保证,不过如果读者发现哪里有误,欢迎指正. CUDA C编程入门文档结构: 第一章:介绍-关于CUDA的总体介绍. 第二章:编程模型-概括CUDA编程模型. 第三章:编程接口-描述CUDA编程的C语言的接口. 第四章:硬件实现-描述GPU的硬件实现. 第五章:编程指引-给出一些指导,怎样才能发挥CPU最大的性能.

函数式编程入门 lisp

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 #lang slideshow (define c (circle 10)) (define r (rectangle 10 20)) ;定义一个调用函数 (define (square n)   (filled-rectangle n n)) ;局部绑定 (define (four p)   (define two-p (hc-append p p))   (vc-append two-p two-p)) ;使用let