【BZOJ2818】Gcd 欧拉筛

Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

hint

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

Source

湖北省队互测

题解:首先我们要求Σgcd(x,y)=p (p为素数)=> Σgcd(x/p,y/p)=1 那么我们就可以枚举p,求y/p的欧拉函数的前缀和辣,又因为数对是有序的,所以结果×2还要减去n以内质数次,为什么,我也没想清楚。。。一定要想清楚。。。

大概是想清楚了,因为每次统计时(1,1)都被统计了2次所以每次减去1,公n以内的质数次。nice!!

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #define N 10000000
 5 using namespace std;
 6 int flag[N+1000],prime[N+1000];
 7 long long phi[N+1000],ans;
 8 int n,k;
 9 void calcphi()
10 {
11     phi[1]=1;
12     for (int i=2;i<=n;i++)
13     {
14         if (!flag[i])
15         {
16             prime[++k]=i;
17             phi[i]=i-1;
18         }
19         for (int j=1;j<=k&&i*prime[j]<=n;j++)
20         {
21             flag[i*prime[j]]=1;
22             if (i%prime[j]==0)
23             {
24                 phi[i*prime[j]]=phi[i]*prime[j];
25                 break;
26             }
27             else    phi[i*prime[j]]=phi[i]*(prime[j]-1);
28         }
29     }
30 }
31
32 int main()
33 {
34     scanf("%d",&n);
35     calcphi();
36     for (int i=1;i<=n;i++)
37         phi[i]+=phi[i-1];
38     for (int i=1;i<=k;i++)
39         ans+=phi[n/prime[i]];
40     printf("%lld",ans*2-k);
41     return 0;
42 }

时间: 2024-10-14 10:06:58

【BZOJ2818】Gcd 欧拉筛的相关文章

BZOJ2818 Gcd 欧拉函数

题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 题解:我们枚举素数p,后面的过程和BZOJ2705一样,不同的是我们限制x>=y,假定得到的答案是ans,那么实际上答案是2*ans-1(加上x<=y,x==y重复计算了) #include <cmath> #include <cstring> #include <cstdlib> #include <iostream> #include <

【BZOJ 2818】gcd 欧拉筛

枚举小于n的质数,然后再枚举小于n/这个质数的Φ的和,乘2再加1即可.乘2是因为xy互换是另一组解,加1是x==y==1时的一组解.至于求和我们只需处理前缀和就可以啦,注意Φ(1)的值不能包含在前缀和里,因为这样就会把x==y==1的情况算2次了,,,貌似包含后只要乘2再减1就可以了 #include<cstdio> using namespace std; const int N=10000003; int num=0,prime[N],phi[N]; long long sum[N]; b

素数筛&amp;&amp;欧拉筛 BZOJ2818 Gcd BZOJ2190 [SDOI2008]仪仗队

折腾了一晚上很水的数论,整个人都萌萌哒 主要看了欧拉筛和素数筛的O(n)的算法 这个比那个一长串英文名的算法的优势在于没有多次计算一个数,也就是说一个数只筛了一次,主要是在%==0之后跳出实现的,具体的解释看的迷迷糊糊,特别是欧拉函数的求解 http://blog.csdn.net/lerenceray/article/details/12420725 代码如下 1 void ES(){ 2 for(int i=2;i<n;i++){ 3 if (!pd[i]){ 4 prime[++top]=

常见模板(欧拉筛素数,最小生成树,快排,并查集,单源最短路)

欧拉筛素数: #include<cstdio> #define maxn 10000000+10 using namespace std; int n,prime[5000001],num_prime=0,m; bool if_prime[maxn]; void euler(int limit) { for(int i=2;i<=limit;i++) { if(!if_prime[i]) prime[++num_prime]=i; for(int j=1;prime[j]*i<=l

HDU 1695 GCD 欧拉函数+容斥原理+质因数分解

链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a <= b <= 100000, c=1, c <= d <= 100000, 0 <= k <= 100000) 思路:因为x与y的最大公约数为k,所以xx=x/k与yy=y/k一定互质.要从a/k和b/k之中选择互质的数,枚举1~b/k,当选择的yy小于等于a/k时,可以

欧拉筛(线性筛)

素数筛,就是按照顺序把合数踢掉,剩下的是素数. 欧拉筛是一种O(n)求素数的筛法.他避免了埃拉特斯特尼筛法对同一数的多次筛除. 欧拉筛的原理是只通过数的最小质因数筛数. 先上代码: #include <cstdio> using namespace std; const int maxn=10000000; int n, m, prime[maxn], isnt_prime[maxn], tot; void get_prime(int n){ isnt_prime[0]=isnt_prime[

[51NOD1181]质数中的质数(质数筛法)(欧拉筛)

题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1181 思路:欧拉筛出所有素数和一个数的判定,找到大于n的最小质数序号p,并且判断p是不是质数,输出这个数. 1 /* 2 ━━━━━┒ギリギリ♂ eye! 3 ┓┏┓┏┓┃キリキリ♂ mind! 4 ┛┗┛┗┛┃\○/ 5 ┓┏┓┏┓┃ / 6 ┛┗┛┗┛┃ノ) 7 ┓┏┓┏┓┃ 8 ┛┗┛┗┛┃ 9 ┓┏┓┏┓┃ 10 ┛┗┛┗┛┃ 11 ┓┏┓┏┓┃ 12

【BZOJ 2190】【SDOI 2008】仪仗队 欧拉筛

欧拉筛模板题 #include<cstdio> using namespace std; const int N=40003; int num=0,prime[N],phi[N]; bool notp[N]; inline void shai(int n){ phi[1]=1; for(int i=2;i<=n;++i){ if (!notp[i]){ prime[++num]=i; phi[i]=i-1; } for(int j=1;j<=num&&i*prime

HDU 2588 GCD (欧拉函数)

GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1013    Accepted Submission(s): 457 Problem Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes writt