BZOJ-3505-数三角形-CQOI2014

描述

给定一个nxm的网格, 请计算三点都在格点上的三角形共有多少个.


分析

  • 三角形的三个顶点不能共线. 这是入手点.
  • 下面来考虑一个问题, 原点到点(x,y)之间的线段上有几个整点
    • 如果把x, y同除以一个数g保证结果是整数, 那么(x/g, y/g)一定是原点到(x,y)的线段上的整点
    • 原点到(x,y)的线段上的整点中 每两个相邻的之间的距离相等. 而且等于原点到第一个点的距离.
    • 那么找到第一个点就可以知道共有几个了. 比如第一个点(x0,y0). 那么一共x/x0个点.
    • 第一个点, 也就是横纵坐标最小的, 就是g最大的. g最大是gcd(x,y). 第一个点的横坐标就是x/gcd(x,y). 带到上面一共gcd(x,y)个整点. 这些点中包含了(x,y).
  • 如果不考虑三点共线的情况, 共tot = (m+1)*(n+1)个点, 一共的方案数是C(tot, 3)种.
  • 然后就可以枚举从原点出发的向量(x,y), 用gcd算出原点到点(x,y)之间的线段上有几个整点. 然后计算有几个等于(x,y)的向量. 相乘.

代码

https://code.csdn.net/snippets/621864

时间: 2024-12-13 17:39:35

BZOJ-3505-数三角形-CQOI2014的相关文章

BZOJ 3505 数三角形

枚举i,j相当于枚举两点且确定里面还有整点.好巧啊.... #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #define maxn 1050 using namespace std; long long n,m,c[maxn*maxn][4]; long long gcd(long long a,long long b) { if (b==0) return

BZOJ 3505: [Cqoi2014]数三角形( 组合数 )

先n++, m++ 显然答案就是C(3, n*m) - m*C(3, n) - n*C(3, m) - cnt. 表示在全部点中选出3个的方案减去不合法的, 同一行/列的不合法方案很好求, 对角线的不合法方案cnt比较麻烦. 枚举对角线(左下-右上), 即(0, 0)-(x, y), 我们发现这种情况有(n-y)*(m-x)*2(算上左上-右下的)种, 然后中间有gcd(x, y)-1个点(不合法), 乘起来就好了. ---------------------------------------

【BZOJ 3505】 [Cqoi2014]数三角形

3505: [Cqoi2014]数三角形 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 664 Solved: 403 [Submit][Status][Discuss] Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正整数m和n. Output 输出一个正整数,为所求三角形数量. Sample Inpu

Bzoj 3505: [Cqoi2014]数三角形 数论

3505: [Cqoi2014]数三角形 Time Limits: 1000 ms  Memory Limits: 524288 KB  Detailed Limits Description Input 输入一行,包含两个空格分隔的正整数m和n. Output 输出一个正整数,为所求三角形数量. Sample Input 输入1: 1 1 输入2: 2 2 Sample Output 输出1: 4 输出2: 76 Data Constraint 对于30%的数据 1<=m,n<=10 对于1

3505: [Cqoi2014]数三角形

3505: [Cqoi2014]数三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1324  Solved: 807[Submit][Status][Discuss] Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正整数m和n. Output 输出一个正整数,为所求三角形数量. Sample Inp

【BZOJ3505】[Cqoi2014]数三角形 组合数

[BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正整数m和n. Output 输出一个正整数,为所求三角形数量. Sample Input 2 2 Sample Output 76 数据范围 1<=m,n<=1000 题解:显然要用补集法,我们只需要求出三点共线的方案数即可.方法是先枚举两端的点所形成的向

bzoj3505 / P3166 [CQOI2014]数三角形

P3166 [CQOI2014]数三角形 前置知识:某两个点$(x_{1},,y_{1}),(x_{2},y_{2})\quad (x_{1}<x_{2},y_{1}<y_{2})$所连成的线段穿过整点的个数为$gcd(x_{2}-x_{1},y_{2}-y_{1})-1$ “注意三角形的三点不能共线.” 暗示你可以处理出总方案再减去三点共线的方案. 显然,总方案就是在$(n+1)*(m+1)$个点中任选$3$个.于是$tot=C((n+1)*(m+1),3)$ 现在我们要算出三点共线的方案

数三角形 bzoj 1201

数三角形(1s 128MB)triangle [题目描述] 小苏看到一个这样的等边三角形:该等边三角形每边的长度为n且被分成n等份,于是每条边就有n-1个等分点.而整个三角形被连接两个不同边的等分点且平行于三角形的第三边的线段分成了n2个单位等边三角形(边长为1).下图左是n=5的情形: 小苏想知道,删除其中的一些短边后,剩下的边一共组成多少个三角形(包括所有边长为m的三角形),正立的和倒立的都算,只要三角形的3m条短边都没有被删除就算是组成一个三角形).例如,上图右就存在19个三角形. [输入

bzoj 1914: [Usaco2010 OPen]Triangle Counting 数三角形 容斥

1914: [Usaco2010 OPen]Triangle Counting 数三角形 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 272  Solved: 143[Submit][Status] Description 在 一只大灰狼偷偷潜入Farmer Don的牛群被群牛发现后,贝西现在不得不履行着她站岗的职责.从她的守卫塔向下瞭望简直就是一件烦透了的事情.她决定做一些开发智力的小练习,防止她睡 着了.想象牧场是一个X,Y平面的网格.她将N

[CQOI 2014] 数三角形 &amp; 机械排序臂

数三角形 bzoj 3505 要知道一个公式就是(a,b)和(x,y)两点所成线段上面的整点数是gcd(a-x,b-y)-1,通过枚举原点到map上任意一点所能成的三角形,再平移,得到要去掉的三点共线的点对. 我当时弱智地弄了个O(n^6)的枚举,不过好歹还是对的拿了三十分. = =满分程序和30分程序几乎一样长. program triangle; var m,n,i,j:integer; ans,t:qword; function gcd(a,b:integer):integer; begi