You have n boxes in a line on the table numbered 1 . . . n from left to right. Your task is to simulate 4
kinds of commands:
? 1 X Y : move box X to the left to Y (ignore this if X is already the left of Y )
? 2 X Y : move box X to the right to Y (ignore this if X is already the right of Y )
? 3 X Y : swap box X and Y
? 4: reverse the whole line.
Commands are guaranteed to be valid, i.e. X will be not equal to Y .
For example, if n = 6, after executing 1 1 4, the line becomes 2 3 1 4 5 6. Then after executing
2 3 5, the line becomes 2 1 4 5 3 6. Then after executing 3 1 6, the line becomes 2 6 4 5 3 1.
Then after executing 4, then line becomes 1 3 5 4 6 2
Input
There will be at most 10 test cases. Each test case begins with a line containing 2 integers n, m
(1 ≤ n, m ≤ 100, 000). Each of the following m lines contain a command.
Output
For each test case, print the sum of numbers at odd-indexed positions. Positions are numbered 1 to n
from left to right.
Sample Input
6 4
1 1 4
2 3 5
3 1 6
4
6 3
1 1 4
2 3 5
3 1 6
100000 1
4
Sample Output
Case 1: 12
Case 2: 9
Case 3: 2500050000
题目大意:你有一行盒子,从左到右编号为1~n,现在有4种操作。
1 X Y 表示把X盒子移到Y盒子的左边
2 X Y 表示把X盒子移到Y盒子的右边
3 X Y 表示交换X盒子和Y盒子的位置
4 将盒子顺序全部翻转过来
最后问进行m次操作后,奇数位置的盒子编号和为多少
思路:最好的方法使用双向链表。这里用数组的方法模拟,用Left[i]和Right[i]
分别表示编号为i的盒子左边和右边的盒子编号(为0表示没有盒子)。通过模拟
链表连接的方法改变连接顺序。
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> using namespace std; int Left[100010],Right[100010]; void link(int L,int R) { Right[L] = R; Left[R] = L; } int main() { int n,m,kase = 0; while(cin >> n >> m) { for(int i = 1; i <= n; i++) { Left[i] = i-1; Right[i] = (i+1) % (n+1); } Right[0] = 1; Left[0] = n; int inv = 0,X,Y; while(m--) { int op; cin >> op; if(op == 4) inv = !inv; else { cin >> X >> Y; if(op == 3 && Right[Y] == X) swap(X,Y); if(op != 3 && inv) op = 3 - op; if(op == 1 && X == Left[Y]) continue; if(op == 2 && X == Right[Y]) continue; int LX,RX,LY,RY; LX = Left[X], RX = Right[X], LY = Left[Y], RY = Right[Y]; if(op == 1) { link(LX,RX); link(LY,X); link(X,Y); } else if(op == 2) { link(LX,RX); link(Y,X); link(X,RY); } else if(op == 3) { if(Right[X] == Y) { link(LX,Y); link(Y,X); link(X,RY); } else { link(LX,Y); link(Y,RX); link(LY,X); link(X,RY); } } } } int num = 0; long long ans = 0; for(int i = 1; i <= n; i++) { num = Right[num]; if(i&1) ans += num; } if(inv && !(n&1)) ans = (long long)n*(n+1)/2 - ans; cout << "Case " << ++kase <<": " << ans << endl; } return 0; }