bzoj千题计划264:bzoj3884: 上帝与集合的正确用法

http://www.lydsy.com/JudgeOnline/problem.php?id=3884

欧拉降幂公式

#include<cmath>
#include<cstdio>

using namespace std;

int get_phi(int p)
{
    int phi=p;
    int m=sqrt(p);
    for(int i=2;i<=m;++i)
        if(p%i==0)
        {
            phi=phi/i*(i-1);
            while(p%i==0) p/=i;
        }
    if(p>1) phi=phi/p*(p-1);
    return phi;
}

int Pow(int a,int b,int p)
{
    int res=1;
    for(;b;a=1LL*a*a%p,b>>=1)
        if(b&1) res=1LL*res*a%p;
    return res;
}

int f(int p)
{
    if(p==1) return 0;
    int phi=get_phi(p);
    return Pow(2,f(phi)+phi,p);
}

int main()
{
    int T,P;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&P);
        printf("%d\n",f(P));
    }
}

原文地址:https://www.cnblogs.com/TheRoadToTheGold/p/8525678.html

时间: 2024-11-05 12:44:40

bzoj千题计划264:bzoj3884: 上帝与集合的正确用法的相关文章

欧拉函数 BZOJ3884 上帝与集合的正确用法

3884: 上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1843  Solved: 862[Submit][Status][Discuss] Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作"α"."α"被定义为"元"构成的集合.容易

BZOJ3884: 上帝与集合的正确用法

Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现,一共有四种不同的“β”. 第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合.显然,一共会有16种不同的“γ”. 如果按照这样下去,上帝创造的第四种元

bzoj3884: 上帝与集合的正确用法 欧拉降幂公式

欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert/article/details/43955611 注:知道欧拉公式是远远不够的,还要知道欧拉降幂公式,因为当指数很大的时候需要用 然后欧拉降幂公式不要求A,C互质,但是B必须大于等于C的欧拉函数 吐槽:感觉记忆化搜索影响不大啊,当然肯定是因为太水了 这样复杂度是O(T*sqrt(p)*logp)

BZOJ 3884(上帝与集合的正确用法-欧拉函数递推找极限)[Template:数论 V2]

3884: 上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 523  Solved: 237 [Submit][Status][Discuss] Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作"α"."α"被定义为"元"构成的集合.容

【BZOJ3884】上帝与集合的正确用法 欧拉定理

[BZOJ3884]上帝与集合的正确用法 Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现,一共有四种不同的“β”. 第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合.显然,一共会有16种不同的“γ

bzoj 3884 上帝与集合的正确用法 指数循环节

3884: 上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现

P4139 上帝与集合的正确用法

P4139 上帝与集合的正确用法 求: \[2^{2^{2^\cdots}}\bmod p \] 多测,\(p\le 10^7,T\le 1000\) 扩展欧拉定理基础题,话说昨天晚上证那个定理证了一晚上还没完全弄明白... 众所周知,那个公式是: \[a^n\equiv a^{n\bmod \varphi(p)+\varphi(p)}\pmod p \] 然后带到这个题的式子里 \[2^{2^{2^\cdots}}\equiv 2^{2^{2^\cdots}\bmod \varphi(p)+\

题解 P4139 【上帝与集合的正确用法】

Solution 上帝与集合的正确用法 题目大意:求\(2^{2^{2^{2^{\ldots}}}}mod\;p\) 扩展欧拉定理 首先主角扩展欧拉定理: \[a^b \equiv \begin{cases} a^{b\;mod\;\phi(p)} & gcd(a,p)=1 \\ a^b & gcd(a,b) \neq 1,b < \phi(p) \\ a^{b\;mod\;\phi(p) + \phi(p)} & gcd(a,b)\neq1,b \geq \phi(p)\e

[BZOJ 3884]上帝与集合的正确用法(扩展欧拉定理)

Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容易发现,一共有两种不同的“α”. 第三天, 上帝又创造了一个新的元素,称作“β”.“β”被定义为“α”构成的集合.容易发现,一共有四种不同的“β”. 第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合.显然,一共会有16种不同的“γ”. 如果按照这样下去,上帝创造的第四种元