JavaWeb项目架构之Kafka分布式日志队列

架构、分布式、日志队列,标题自己都看着唬人,其实就是一个日志收集的功能,只不过中间加了一个Kafka做消息队列罢了。

kafka介绍

Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。

特性

Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:

  • 通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
  • 高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。
  • 支持通过Kafka服务器和消费机集群来分区消息。
  • 支持Hadoop并行数据加载。

主要功能

  • 发布和订阅消息流,这个功能类似于消息队列,这也是kafka归类为消息队列框架的原因
  • 以容错的方式记录消息流,kafka以文件的方式来存储消息流
  • 可以再消息发布的时候进行处理

使用场景

  • 在系统或应用程序之间构建可靠的用于传输实时数据的管道,消息队列功能
  • 构建实时的流数据处理程序来变换或处理数据流,数据处理功能

消息传输流程

相关术语介绍

  • Broker

    Kafka集群包含一个或多个服务器,这种服务器被称为broker

  • Topic

    每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)

  • Partition

    Partition是物理上的概念,每个Topic包含一个或多个Partition.

  • Producer

    负责发布消息到Kafka broker

  • Consumer

    消息消费者,向Kafka broker读取消息的客户端。

  • Consumer Group

    每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)

Kafka安装

环境

Linux、JDK、Zookeeper

下载二进制程序

wget https://archive.apache.org/dist/kafka/0.10.0.1/kafka_2.11-0.10.0.1.tgz

安装

tar -zxvf kafka_2.11-0.10.0.1.tgz
cd kafka_2.11-0.10.0.1

目录说明

bin 启动,停止等命令
config 配置文件
libs 类库

参数说明

#########################参数解释##############################

broker.id=0  #当前机器在集群中的唯一标识,和zookeeper的myid性质一样

port=9092 #当前kafka对外提供服务的端口默认是9092

host.name=192.168.1.170 #这个参数默认是关闭的

num.network.threads=3 #这个是borker进行网络处理的线程数

num.io.threads=8 #这个是borker进行I/O处理的线程数

log.dirs=/opt/kafka/kafkalogs/ #消息存放的目录,这个目录可以配置为“,”逗号分割的表达式,上面的num.io.threads要大于这个目录的个数这个目录,如果配置多个目录,新创建的topic他把消息持久化的地方是,当前以逗号分割的目录中,那个分区数最少就放那一个

socket.send.buffer.bytes=102400 #发送缓冲区buffer大小,数据不是一下子就发送的,先回存储到缓冲区了到达一定的大小后在发送,能提高性能

socket.receive.buffer.bytes=102400 #kafka接收缓冲区大小,当数据到达一定大小后在序列化到磁盘

socket.request.max.bytes=104857600 #这个参数是向kafka请求消息或者向kafka发送消息的请请求的最大数,这个值不能超过java的堆栈大小

num.partitions=1 #默认的分区数,一个topic默认1个分区数

log.retention.hours=168 #默认消息的最大持久化时间,168小时,7天

message.max.byte=5242880  #消息保存的最大值5M

default.replication.factor=2  #kafka保存消息的副本数,如果一个副本失效了,另一个还可以继续提供服务

replica.fetch.max.bytes=5242880  #取消息的最大直接数

log.segment.bytes=1073741824 #这个参数是:因为kafka的消息是以追加的形式落地到文件,当超过这个值的时候,kafka会新起一个文件

log.retention.check.interval.ms=300000 #每隔300000毫秒去检查上面配置的log失效时间(log.retention.hours=168 ),到目录查看是否有过期的消息如果有,删除

log.cleaner.enable=false #是否启用log压缩,一般不用启用,启用的话可以提高性能

zookeeper.connect=192.168.1.180:12181,192.168.1.181:12181,192.168.1.182:1218 #设置zookeeper的连接端口、如果非集群配置一个地址即可

#########################参数解释##############################

启动kafka

启动kafka之前要启动相应的zookeeper集群、自行安装,这里不做说明。

#进入到kafka的bin目录
./kafka-server-start.sh -daemon ../config/server.properties

Kafka集成

环境

spring-boot、elasticsearch、kafka

pom.xml引入:

<!-- kafka 消息队列 -->
<dependency>
<groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
    <version>1.1.1.RELEASE</version>
</dependency>

生产者

import java.util.HashMap;
import java.util.Map;

import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
/**
 * 生产者
 * 创建者 科帮网
 * 创建时间 2018年2月4日
 */
@Configuration
@EnableKafka
public class KafkaProducerConfig {

    @Value("${kafka.producer.servers}")
    private String servers;
    @Value("${kafka.producer.retries}")
    private int retries;
    @Value("${kafka.producer.batch.size}")
    private int batchSize;
    @Value("${kafka.producer.linger}")
    private int linger;
    @Value("${kafka.producer.buffer.memory}")
    private int bufferMemory;

    public Map<String, Object> producerConfigs() {
        Map<String, Object> props = new HashMap<>();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
        props.put(ProducerConfig.RETRIES_CONFIG, retries);
        props.put(ProducerConfig.BATCH_SIZE_CONFIG, batchSize);
        props.put(ProducerConfig.LINGER_MS_CONFIG, linger);
        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, bufferMemory);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
        return props;
    }

    public ProducerFactory<String, String> producerFactory() {
        return new DefaultKafkaProducerFactory<>(producerConfigs());
    }

    @Bean
    public KafkaTemplate<String, String> kafkaTemplate() {
        return new KafkaTemplate<String, String>(producerFactory());
    }
}

消费者

mport java.util.HashMap;
import java.util.Map;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.ConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;
/**
 * 消费者
 * 创建者 科帮网
 * 创建时间 2018年2月4日
 */
@Configuration
@EnableKafka
public class KafkaConsumerConfig {
    @Value("${kafka.consumer.servers}")
    private String servers;
    @Value("${kafka.consumer.enable.auto.commit}")
    private boolean enableAutoCommit;
    @Value("${kafka.consumer.session.timeout}")
    private String sessionTimeout;
    @Value("${kafka.consumer.auto.commit.interval}")
    private String autoCommitInterval;
    @Value("${kafka.consumer.group.id}")
    private String groupId;
    @Value("${kafka.consumer.auto.offset.reset}")
    private String autoOffsetReset;
    @Value("${kafka.consumer.concurrency}")
    private int concurrency;
    @Bean
    public KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<String, String>> kafkaListenerContainerFactory() {
        ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
        factory.setConsumerFactory(consumerFactory());
        factory.setConcurrency(concurrency);
        factory.getContainerProperties().setPollTimeout(1500);
        return factory;
    }

    public ConsumerFactory<String, String> consumerFactory() {
        return new DefaultKafkaConsumerFactory<>(consumerConfigs());
    }

    public Map<String, Object> consumerConfigs() {
        Map<String, Object> propsMap = new HashMap<>();
        propsMap.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, servers);
        propsMap.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, enableAutoCommit);
        propsMap.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, autoCommitInterval);
        propsMap.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, sessionTimeout);
        propsMap.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        propsMap.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        propsMap.put(ConsumerConfig.GROUP_ID_CONFIG, groupId);
        propsMap.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoOffsetReset);
        return propsMap;
    }

    @Bean
    public Listener listener() {
        return new Listener();
    }
}

日志监听

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;

import com.itstyle.es.common.utils.JsonMapper;
import com.itstyle.es.log.entity.SysLogs;
import com.itstyle.es.log.repository.ElasticLogRepository;
/**
 * 扫描监听
 * 创建者 科帮网
 * 创建时间 2018年2月4日
 */
@Component
public class Listener {
    protected final Logger logger = LoggerFactory.getLogger(this.getClass());

    @Autowired
    private  ElasticLogRepository elasticLogRepository;

    @KafkaListener(topics = {"itstyle"})
    public void listen(ConsumerRecord<?, ?> record) {
        logger.info("kafka的key: " + record.key());
        logger.info("kafka的value: " + record.value());
        if(record.key().equals("itstyle_log")){
            try {
                SysLogs log = JsonMapper.fromJsonString(record.value().toString(), SysLogs.class);
                logger.info("kafka保存日志: " + log.getUsername());
                elasticLogRepository.save(log);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }
}

测试日志传输

  /**
    * kafka 日志队列测试接口
    */
   @GetMapping(value="kafkaLog")
   public @ResponseBody String kafkaLog() {
        SysLogs log = new SysLogs();
        log.setUsername("红薯");
        log.setOperation("开源中国社区");
        log.setMethod("com.itstyle.es.log.controller.kafkaLog()");
        log.setIp("192.168.1.80");
        log.setGmtCreate(new Timestamp(new Date().getTime()));
        log.setExceptionDetail("开源中国社区");
        log.setParams("{‘name‘:‘码云‘,‘type‘:‘开源‘}");
        log.setDeviceType((short)1);
        log.setPlatFrom((short)1);
        log.setLogType((short)1);
        log.setDeviceType((short)1);
        log.setId((long)200000);
        log.setUserId((long)1);
        log.setTime((long)1);
        //模拟日志队列实现
        String json = JsonMapper.toJsonString(log);
        kafkaTemplate.send("itstyle", "itstyle_log",json);
        return "success";
   }

Kafka与Redis

之前简单的介绍过,JavaWeb项目架构之Redis分布式日志队列,有小伙伴们聊到, Redis PUB/SUB没有任何可靠性保障,也不会持久化。当然了,原项目中仅仅是记录日志,并不是十分重要的信息,可以有一定程度上的丢失

Kafka与Redis PUB/SUB之间最大的区别在于Kafka是一个完整的分布式发布订阅消息系统,而Redis PUB/SUB只是一个组件而已。

使用场景

  • Redis PUB/SUB

    消息持久性需求不高、吞吐量要求不高、可以忍受数据丢失

  • Kafka

    高可用、高吞吐、持久性、多样化的消费处理模型

开源项目源码(参考):https://gitee.com/52itstyle/spring-boot-elasticsearch

原文地址:https://www.cnblogs.com/smallSevens/p/8422632.html

时间: 2024-11-06 03:43:11

JavaWeb项目架构之Kafka分布式日志队列的相关文章

JavaWeb项目架构之Redis分布式日志队列

架构.分布式.日志队列,标题自己都看着唬人,其实就是一个日志收集的功能,只不过中间加了一个Redis做消息队列罢了. 前言 为什么需要消息队列? 当系统中出现"生产"和"消费"的速度或稳定性等因素不一致的时候,就需要消息队列,作为抽象层,弥合双方的差异. 比如我们系统中常见的邮件.短信发送,把这些不需要及时响应的功能写入队列,异步处理请求,减少响应时间. 如何实现? 成熟的JMS消息队列中间件产品市面上有很多,但是基于目前项目的架构以及部署情况,我们采用Redis做

JavaWeb项目架构之Redis分布式日志队列-SpringBoot实例

架构.分布式.日志队列,标题自己都看着唬人,其实就是一个日志收集的功能,只不过中间加了一个Redis做消息队列罢了. ? 为什么需要消息队列? 当系统中出现“生产“和“消费“的速度或稳定性等因素不一致的时候,就需要消息队列,作为抽象层,弥合双方的差异.比如我们系统中常见的邮件.短信发送,把这些不需要及时响应的功能写入队列,异步处理请求,减少响应时间. 如何实现? 成熟的JMS消息队列中间件产品市面上有很多,但是基于目前项目的架构以及部署情况,我们采用Redis做消息队列. 为什么用Redis?

JavaWeb项目架构之FastDFS分布式文件系统

概述 分布式文件系统:Distributed file system, DFS,又叫做网络文件系统:Network File System.一种允许文件通过网络在多台主机上分享的文件系统,可让多机器上的多用户分享文件和存储空间. FastDFS是用c语言编写的一款开源的分布式文件系统,充分考虑了冗余备份.负载均衡.线性扩容等机制,并注重高可用.高性能等指标,功能包括:文件存储.文件同步.文件访问(文件上传.文件下载)等,解决了大容量存储和负载均衡的问题.特别适合中小文件(建议范围:4KB < f

大型网站架构系列:分布式消息队列(一) (转)

以下是消息队列以下的大纲,本文主要介绍消息队列概述,消息队列应用场景和消息中间件示例(电商,日志系统). 本次分享大纲 消息队列概述 消息队列应用场景 消息中间件示例 JMS消息服务(见第二篇:大型网站架构系列:分布式消息队列(二)) 常用消息队列(见第二篇:大型网站架构系列:分布式消息队列(二)) 参考(推荐)资料(见第二篇:大型网站架构系列:分布式消息队列(二)) 本次分享总结(见第二篇:大型网站架构系列:分布式消息队列(二)) 一.消息队列概述 消息队列中间件是分布式系统中重要的组件,主要

大型网站架构系列:分布式消息队列(二)

本文是大型网站架构系列:消息队列(二),主要分享JMS消息服务,常用消息中间件(Active MQ,Rabbit MQ,Zero MQ,Kafka).[第二篇的内容大部分为网络资源的整理和汇总,供大家学习总结使用,最后有文章来源] 本次分享大纲 消息队列概述(见第一篇:大型网站架构系列:分布式消息队列(一)) 消息队列应用场景(见第一篇:大型网站架构系列:分布式消息队列(一)) 消息中间件示例(见第一篇:大型网站架构系列:分布式消息队列(一)) JMS消息服务 常用消息队列 参考(推荐)资料 本

大型网站架构系列:分布式消息队列(一)(转)

大型网站架构系列:分布式消息队列(一) 以下是消息队列以下的大纲,本文主要介绍消息队列概述,消息队列应用场景和消息中间件示例(电商,日志系统). 本次分享大纲 消息队列概述 消息队列应用场景 消息中间件示例 JMS消息服务(见第二篇:大型网站架构系列:分布式消息队列(二)) 常用消息队列(见第二篇:大型网站架构系列:分布式消息队列(二)) 参考(推荐)资料(见第二篇:大型网站架构系列:分布式消息队列(二)) 本次分享总结(见第二篇:大型网站架构系列:分布式消息队列(二)) 一.消息队列概述 消息

Kafka 分布式消息队列介绍

Kafka 分布式消息队列 类似产品有JBoss.MQ 一.由Linkedln 开源,使用scala开发,有如下几个特点: (1)高吞吐 (2)分布式 (3)支持多语言客户端 (C++.Java) 二.组成: 客户端是 producer 和 consumer,提供一些API,服务器端是Broker,客户端提供可以向Broker内发布消息.消费消息,服务器端提供消息的存储等功能 Kafka 特点是支持分区.分布式.可拓展性强 三.Kafka 的消息分几个层次 (1)Topic 一类主题 (2)Pa

[转载] 快速理解Kafka分布式消息队列框架

转载自http://blog.csdn.net/xiaolang85/article/details/18048631 ==是什么 == 简单的说,Kafka是由Linkedin开发的一个分布式的消息队列系统(Message Queue) 目标Scope(解决什么问题) kafka开发的主要初衷目标是构建一个用来处理海量日志,用户行为和网站运营统计等的数据处理框架.在结合了数据挖掘,行为分析,运营监控等需求的情况下,需要能够满足各种实时在线和批量离线处理应用场合对低延迟和批量吞吐性能的要求.从需

linkedin公司的Kafka分布式消息队列

Kafka[ 是linkedin(是一个公司)用于日志处理的分布式消息队列,linkedin的日志数据容量大,但对可靠性要求不高,其日志数据主要包括用户行为(登录.浏览.点击.分享.喜欢)以及系统运行日志(CPU.内存.磁盘.网络.系统及进程状态). 当前很多的消息队列服务提供可靠交付保证,并默认是即时消费(不适合离线).高可靠交付对linkedin的日志不是必须的,故可通过降低可靠性来提高性能,同时通过构建分布式的集群,允许消息在系统中累积,使得kafka同时支持离线和在线日志处理. 注:本文