本文由@星沉阁冰不语出品,转载请注明作者和出处. 文章链接:http://blog.csdn.net/xingchenbingbuyu/article/details/53677630 微博:http://weibo.com/xingchenbing 前一篇博客Net类的设计和神经网络的初始化中,大部分还是比较简单的.因为最重要事情就是生成各种矩阵并初始化.神经网络中的重点和核心就是本文的内容--前向和反向传播两大计算过程.每层的前向传播分别包含加权求和(卷积?)的线性运算和激活函数的非线性运
下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) 模型选择 验证数据集(validation data set),又叫验证集(validation set),指用于模型选择的在train set和test set之外预留的一小部分数据集 若训练数据不够时,预留验证集也是一种luxury.常采用的方法为K折交叉验证.原理为:把train set分割成k个不重合
正向传播 正向传播的计算图 通常绘制计算图来可视化运算符和变量在计算中的依赖关系.下图绘制了本节中样例模型正向传播的计算图,其中左下角是输入,右上角是输出.可以看到,图中箭头方向大多是向右和向上,其中方框代表变量,圆圈代表运算符,箭头表示从输入到输出之间的依赖关系. 反向传播 训练深度学习模型 在训练深度学习模型时,正向传播和反向传播之间相互依赖.一方面,正向传播的计算可能依赖于模型参数的当前值,而这些模型参数是在反向传播的梯度计算后通过优化算法迭代的而这些当前值是优化算法最近一次根据反向传播算
系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 第2章 神经网络中的三个基本概念 2.0 通俗地理解三大概念 这三大概念是:反向传播,梯度下降,损失函数. 神经网络训练的最基本的思想就是:先"猜"一个结果,我们叫预测结果a,看看这个预测结果和事先标记好的训练集中的真实结果y之间的差距,然后调整策略,再试一次,这一次就不是"猜"了,而是有依据地向正确的方向靠近.如此反复多次
前向传播 如图所示,这里讲得已经很清楚了,前向传播的思想比较简单. 举个例子,假设上一层结点i,j,k,-等一些结点与本层的结点w有连接,那么结点w的值怎么算呢?就是通过上一层的i,j,k等结点以及对应的连接权值进行加权和运算,最终结果再加上一个偏置项(图中为了简单省略了),最后在通过一个非线性函数(即激活函数),如ReLu,sigmoid等函数,最后得到的结果就是本层结点w的输出. 最终不断的通过这种方法一层层的运算,得到输出层结果. 对于前向传播来说,不管维度多高,其过程都可以用如下公式表
caffe中的网络结构是一层连着一层的,在相邻的两层中,可以认为前一层的输出就是后一层的输入,可以等效成如下的模型 可以认为输出top中的每个元素都是输出bottom中所有元素的函数.如果两个神经元之间没有连接,可以认为相应的权重为0.其实上图的模型只适用于全连接层,其他的如卷积层.池化层,x与y之间很多是没有连接的,可以认为很多权重都是0,而池化层中有可能部分x与y之间是相等的,可以认为权重是1. 下面用以上的模型来说明反向传播的过程.在下图中,我用虚线将y与损失Loss之间连接了起来,表示L
前面在mnist中使用了三个非线性层来增加模型复杂度,并通过最小化损失函数来更新参数,下面实用最底层的方式即张量进行前向传播(暂不采用层的概念). 主要注意点如下: · 进行梯度运算时,tensorflow只对tf.Variable类型的变量进行记录,而不对tf.Tensor或者其他类型的变量记录 · 进行梯度更新时,如果采用赋值方法更新即w1=w1+x的形式,那么所得的w1是tf.Tensor类型的变量,所以要采用原地更新的方式即assign_sub函数,或者再次使用tf.Variable包起
出处: Michael Nielsen的<Neural Network and Deep Learning>,点击末尾“阅读原文”即可查看英文原文. 本节译者:哈工大SCIR本科生 王宇轩 声明:如需转载请联系[email protected],未经授权不得转载. 使用神经网络识别手写数字 反向传播算法是如何工作的 热身:一个基于矩阵的快速计算神经网络输出的方法 关于损失函数的两个假设 Hadamard积 反向传播背后的四个基本等式 四个基本等式的证明(选读) 反向传播算法 反向传播算法代码
1.反向传播 关于反向传播我的理解是这样的,SVM和SoftMax可以看成一层神经网络,你如果想要调整它的W很简单,只有求导就可以了,但是当神经网络有多层的话,你无法直接求导来更新最开始层的W,于是就出现了反向传播这个工具.至于神经网络为什么需要多层,理由有很多,我先举个例子,比如一个汽车在图片里面可以有各个方向的,而一层神经网络(SVM和SoftMax)只能处理一种方向的情况,当你需要处理所有情况就需要多层神经网络了. 上面是关于为什么需要多层神经网络和反向传播的解释,下面我介绍反向传播的具体