矩阵快速幂(转载)

super_boy原创文章,转载请注明出处http://www.cnblogs.com/yan-boy/archive/2012/11/29/2795294.html

矩阵的快速幂是用来高效地计算矩阵的高次方的。将朴素的o(n)的时间复杂度,降到log(n)。

这里先对原理(主要运用了矩阵乘法的结合律)做下简单形象的介绍:

一般一个矩阵的n次方,我们会通过连乘n-1次来得到它的n次幂。

但做下简单的改进就能减少连乘的次数,方法如下:

把n个矩阵进行两两分组,比如:A*A*A*A*A*A  =>  (A*A)*(A*A)*(A*A)

这样变的好处是,你只需要计算一次A*A,然后将结果(A*A)连乘自己两次就能得到A^6,即(A*A)^3=A^6。算一下发现这次一共乘了3次,少于原来的5次。

其实大家还可以取A^3作为一个基本单位。原理都一样:利用矩阵乘法的结合律,来减少重复计算的次数。

以上都是取一个具体的数来作为最小单位的长度,这样做虽然能够改进效率,但缺陷也是很明显的,取个极限的例子(可能有点不恰当,但基本能说明问题),当n无穷大的时候,你现在所取的长度其实和1没什么区别。所以就需要我们找到一种与n增长速度”相适应“的”单位长度“,那这个长度到底怎么去取呢???这点是我们要思考的问题。

有了以上的知识,我们现在再来看看,到底怎么迅速地求得矩阵的N次幂。

既然要减少重复计算,那么就要充分利用现有的计算结果咯!~怎么充分利用计算结果呢???这里考虑二分的思想。。

大家首先要认识到这一点:任何一个整数N,都能用二进制来表示。。这点大家都应该知道,但其中的内涵真的很深很深(这点笔者感触很深,在文章的最后,我将谈谈我对的感想)!!

计算机处理的是离散的信息,都是以0,1来作为信号的处理的。可想而知二进制在计算机上起着举足轻重的地位。它能将模拟信号转化成数字信号,将原来连续的实际模型,用一个离散的算法模型来解决。  好了,扯得有点多了,不过相信这写对下面的讲解还是有用的。

回头看看矩阵的快速幂问题,我们是不是也能把它离散化呢?比如A^19  =>  (A^16)*(A^2)*(A^1),显然采取这样的方式计算时因子数将是log(n)级别的(原来的因子数是n),不仅这样,因子间也是存在某种联系的,比如A^4能通过(A^2)*(A^2)得到,A^8又能通过(A^4)*(A^4)得到,这点也充分利用了现有的结果作为有利条件。下面举个例子进行说明:

现在要求A^156,而156(10)=10011100(2)

也就有A^156=>(A^4)*(A^8)*(A^16)*(A^128)  考虑到因子间的联系,我们从二进制10011100中的最右端开始计算到最左端。细节就说到这,下面给核心代码:

1 while(N)
2  {
3                 if(N&1)
4                        res=res*A;
5                 n>>=1;
6                 A=A*A;
7  }

里面的乘号,是矩阵乘的运算,res是结果矩阵。

第3行代码每进行一次,二进制数就少了最后面的一个1。二进制数有多少个1就第3行代码就执行多少次。

好吧,矩阵快速幂的讲解就到这里吧。在文章我最后给出我实现快速幂的具体代码(代码以3*3的矩阵为例)。

现在我就说下我对二进制的感想吧:

我们在做很多”连续“的问题的时候都会用到二进制将他们离散简化

1.多重背包问题

2.树状数组

3.状态压缩DP

……………还有很多。。。究其根本还是那句话:化连续为离散。。很多时候我们并不是为了解决一个问题而使用二进制,更多是时候是为了优化而使用它。所以如果你想让你的程序更加能适应大数据的情况,那么学习学习二进制及其算法思想将会对你有很大帮助。

最后贴出一些代码供大家学习,主要起演示的效果:

#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <iostream>
using namespace std;

int N;

struct matrix
{
       int a[3][3];
}origin,res;

matrix multiply(matrix x,matrix y)
{
       matrix temp;
       memset(temp.a,0,sizeof(temp.a));
       for(int i=0;i<3;i++)
       {
               for(int j=0;j<3;j++)
               {
                       for(int k=0;k<3;k++)
                       {
                               temp.a[i][j]+=x.a[i][k]*y.a[k][j];
                       }
               }
       }
       return temp;
}

void init()
{
     printf("随机数组如下:\n");
     for(int i=0;i<3;i++)
     {
             for(int j=0;j<3;j++)
             {
                     origin.a[i][j]=rand()%10;
                     printf("%8d",origin.a[i][j]);
             }
             printf("\n");
     }
     printf("\n");
     memset(res.a,0,sizeof(res.a));
     res.a[0][0]=res.a[1][1]=res.a[2][2]=1;                  //将res.a初始化为单位矩阵
}

void calc(int n)
{
     while(n)
     {
             if(n&1)
                    res=multiply(res,origin);
             n>>=1;
             origin=multiply(origin,origin);
     }
     printf("%d次幂结果如下:\n",n);
     for(int i=0;i<3;i++)
     {
             for(int j=0;j<3;j++)
                     printf("%8d",res.a[i][j]);
             printf("\n");
     }
     printf("\n");
}
int main()
{
    while(cin>>N)
    {
            init();
            calc(N);
    }
    return 0;
}
时间: 2024-10-05 17:51:05

矩阵快速幂(转载)的相关文章

HDU 1757 A Simple Math Problem (矩阵快速幂)

[题目链接]:click here~~ [题目大意]: If x < 10 f(x) = x. If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + -- + a9 * f(x-10); 问f(k)%m的值. [思路]:矩阵快速幂,具体思路看代码吧,注意一些细节. 代码: #include<bits/stdc++.h> using namespace std; typedef long long LL; const

[矩阵快速幂+循环节]hdu4291

题意: Given n (1 <= n <= 1018), You should solve for g(g(g(n))) mod 109 + 7 where g(n) = 3g(n - 1) + g(n - 2) g(1) = 1 g(0) = 0 分析: 这个递推关系可以用矩阵快速幂来解决,但是这个题的问题是mod很大,会爆long long 并且超时的.那么这就需要一些特技了. 于是看到大家都用的循环节,但是网上对为什么要这么取循环节却都模糊或者答非所问,大概都不太晓得,知道可以A提就可

HDU 2604 Queuing (递推+矩阵快速幂)

[题目链接]:click here~~ [题目大意]: n个人排队,f表示女,m表示男,包含子串'fmf'和'fff'的序列为O队列,否则为E队列,有多少个序列为E队列. [思路]: 用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1): 如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff,其中fff和fmf不满足题意所以我们不考虑,但是如果是 mmf的话那么前n-3可以找满足

HDOJ Arc of Dream 4686【矩阵快速幂】

Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Total Submission(s): 3126    Accepted Submission(s): 982 Problem Description An Arc of Dream is a curve defined by following function: where a0 = A0 ai =

poj 2778 AC自动机 + 矩阵快速幂

// poj 2778 AC自动机 + 矩阵快速幂 // // 题目链接: // // http://poj.org/problem?id=2778 // // 解题思路: // // 建立AC自动机,确定状态之间的关系,构造出,走一步 // 能到达的状态矩阵,然后进行n次乘法,就可以得到状态间 // 走n步的方法数. // 精髓: // 1):这个ac自动机有一些特别,根节点是为空串,然而 // 每走一步的时候,如果没法走了,这时候,不一定是回到根 // 节点,因为有可能单个的字符时病毒,这样

LightOJ 1070 Algebraic Problem (推导+矩阵快速幂)

题目链接:LightOJ 1070 Algebraic Problem 题意:已知a+b和ab的值求a^n+b^n.结果模2^64. 思路: 1.找递推式 得到递推式之后就是矩阵快速幂了 注意:模2^64,定义成unsigned long long 类型,因为无符号类型超过最大范围的数与该数%最大范围 的效果是一样的. AC代码: #include<stdio.h> #include<string.h> #define LL unsigned long long struct Ma

poj2778DNA Sequence (AC自动机+矩阵快速幂)

转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud DNA Sequence Time Limit: 1000MS   Memory Limit: 65536K Description It's well known that DNA Sequence is a sequence only contains A, C, T and G, and it's very useful to analyze a segment of DN

bnu 34985 Elegant String(矩阵快速幂+dp推导公式)

Elegant String Time Limit: 1000ms Memory Limit: 65536KB 64-bit integer IO format: %lld      Java class name: Main Prev Submit Status Statistics Discuss Next Type: None None Graph Theory      2-SAT     Articulation/Bridge/Biconnected Component      Cy

SHUOJ1857 Yaoge鸡排系列之九——好多鸡排!!!【矩阵快速幂】

转载请注明出处:http://www.cnblogs.com/KirisameMarisa/p/4187670.html 题目链接:http://202.121.199.212/JudgeOnline/problem.php?id=1857 1857: Yaoge鸡排系列之九——好多鸡排!!! Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 98  Solved: 6 Description Yaoge买了n块鸡排,其中第n块鸡排的质量为M(n),同时