参考文献 从贝叶斯定理说开去 关键词:逆向概率;先验概率;后验概率 我所理解的贝叶斯定理--知乎专栏 关键词:医院病症检测中的真假阳性 似然与极大似然估计--知乎专栏 关键词:似然与概率的区别 时间: 2024-10-10 08:02:12
贝叶斯分类器(Bayesian decision theory) 贝叶斯决策论是概率框架下实施决策的基本方法,通过相关概率预先已知的情况下对误判损失来选择最优的类别分类. 将标记为cj的样本误分类成ci产生的期望损失,即样本上的“条件风险”为 贝叶斯分类的最基本的思想是:为了最小化总体风险,只需在每个样本上选择能够使条件风险R(c|x)最小的类别标记. 要想用贝叶斯判定准则来最小化决策风险,首先要获得后验概率P(c|x),机器学习则是基于有限的训练样本集尽可能准确的估计出后验概率P(c|x).通
高斯环境下贝叶斯分类器退化为线性分类器,与感知器形式一样,但是感知器的线性特性并不是由于高斯假设而引起的. 贝叶斯分类器: 高斯分布下的贝叶斯分类器 更多关于神经网络笔记见我的专栏:神经网络与机器学习笔记
贝叶斯分类器 什么是贝叶斯分类器 贝叶斯分类器是一类分类器的总称,这些分类器均以贝叶斯定理为基础,故统称为贝叶斯分类器.这些分类器中最简单的是朴素贝叶斯分类器,它几乎完全按照贝叶斯定理进行分类,因此我们从朴素贝叶斯分类器说起. 贝叶斯定理: 贝叶斯定理是概率论中一个比较重要的定理,在讲解贝叶斯定理之前,首先回顾一下贝叶斯定理的基础:条件概率和全概率公式. 条件概率:设\(A,B\)是两个事件,且\(P(A)>0\),称 \[P(B|A)=\frac{P(AB)}{P(A)}\] 为在事件\(A\
数据挖掘-贝叶斯分类 目录 数据挖掘-贝叶斯分类 1. 贝叶斯分类器概述 1.1 贝叶斯分类器简介 1.1.1 什么是贝叶斯分类器? 1.1.2 朴素贝叶斯分类器 2. 数学基础 2.1 概率论 2.1.1 概率 2.1.2 贝叶斯理论 3. 贝叶斯决策论 3.1 贝叶斯决策 3.1.1 贝叶斯决策介绍 3.2 基于最小错误率的贝叶斯决策 3.2.1 什么时候会分错类? 3.2.2 基于最小错误率的贝叶斯分类器 3.2.3 基于最小错误率的贝叶斯决策的证明 3.2.4 分类决策边界 3.2 基于
贝叶斯分类是统计学的一个分类方法,基于贝叶斯定理.首先贝叶斯分类的一个核心假设是一个属性值对给定类的影响独立于其他属性的值(类条件独立). 先来看下条件概率: 设A.B是两个事件,且P(B)>0,则称 为在事件B发生的条件下,事件A的条件概率. 再来看一下贝叶斯定理:. 其中: X 是类标识未知的数据样本(或数据元组) 如:35岁收入$4000的顾客 H 是数据样本X属于某特定类C的某种假定. 如:假设顾客将购买计算机 P(H/X):条件X下H的后验概率 如:知道顾客年龄与收入时,顾客将购买计算
贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类.也就是说,贝叶斯分类器是最小错误率意义上的优化,它遵循"多数占优"这一基本原则. 一.分类器的基本概念 经过了一个阶段的模式识别学习,对于模式和模式类的概念有一个基本的了解,并尝试使用MATLAB实现一些模式类的生成.而接下来如何对这些模式进行分类成为了学习的第二个重点.这就需要用到分类器. 表述模式分类器的方式有很多种,其中用的最多的是一
先验概率:基于已有知识对司机事件进行概率预估,但不考虑任何相关因素. 后验概率:基于已有知识对随机事件进行概率预估,并考虑相关因素P(c|X). 7.1 贝叶斯决策论 贝叶斯决策论是概率框架下实施决策的基本方法.贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记. 在样本x上的“条件风险”: 我们的任务是寻找一个判定准则h:以最小化总体风险 贝叶斯判定准则:为最小化总体风险,只需在每个样本上选择哪个能使条件风险R(c|x)最小的类别标记. h*称为贝叶斯最优分类器,与之对应的总
分类:分类的意义 传统意义下的分类:生物物种预测:天气预报决策:yes or no分类的传统模型分类(判别分析)与聚类有什么差别?有监督学习,无监督学习,半监督学习 常见分类模型与算法 线性判别法距离判别法贝叶斯分类器决策树支持向量机(SVM)神经网络 文本挖掘典型场景 网页自动分类垃圾邮件判断评论自动分析通过用户访问内容判别用户喜好 网页自动分类 自动化门户系统(百度新闻,谷歌新闻等)搜索引擎根据用户标签类型推送不同类别的搜索结果 距离判别法 原理:计算待测点与各类的距离,取最短者为其所属分类
这个系列是为了应对找工作面试时面试官问的算法问题,所以只是也谢算法的简要介绍,后期会陆续补充关于此算法的常见面试的问题! 贝叶斯分类器的原理其实很简单,知道了贝叶斯公式基本上就知道了贝叶斯分类器的工作原理.对于一个待分类项,求出此项出现的条件下哪个类别的概率大,就判定为哪类,仅次而已.其实贝叶斯分类器是建立在错误的理论上建立起来的分类器,没错就是错误的理论,它假定事物之间是没有联系的(马克思告诉我们,这是不可能的...),从而大大的简化了计算. 算法的过程如下: 首先核心的是贝叶斯公式:P(B
朴素贝叶斯分类器 (naive bayes classifier, NBC) 是一种常见且简单有效的贝叶斯分类算法.对已知类别,朴素贝叶斯分类器在估计类条件概率时假设特征之间条件独立.这样的假设,可以使得在有限的训练样本下,原本难以计算的联合概率 \(P(X_1, X_2, \cdots, X_n | Y)\) 转化为每个类别条件概率的乘积.尤其是在特征很多时,就显得更加简便. 条件独立性 给定 X, Y 条件独立,则有: \[ P(X,Y|Z)=P(X|Z)\times P(Y|Z) \] 有