通过实例让你真正明白mapreduce---填空式、分布(分割)编程

问题导读:

1.如何在讲mapreduce函数中的字符串等信息,输出到eclipse控制台?
2.除了使用下文方法,还有其它方法输出到控制台?
3.map中,系统默认接受的value值是什么?
4.reduce输出不是自己想要的结果,可能的原因是什么?

mapreduce不是很好理解,为什么?
因为我们传统编程,运行程序,都在本地,怎么会跑到别的客户端或则服务器那,总之运行程序就是一太电脑。mapreduce牛啊,他竟然可以让一个程序多台电脑一块跑,这也是它的神奇不同之处,同时也让mapreduce蒙上了一层神秘的面纱。

这里我们就来揭开这个面纱。

这里难以理解的地方是什么?它是如何分割的,如何分组、如何分区的,什么shuffer,等等各种概念涌入初学者脑海中,然后就是云里雾里、似看清、又看不清。

这里我们抛弃这些所有的概念,让我们来一个短平快、更直接、更简单的的认识。

记得我们在上学的时候,有一种题型是填空题,而mapreduce就是一个填空式编程。

为什么被认为是填空式编程,因为mapreduce是一个框架,我们所作的就是编写map函数、reduce函数、然后驱动函数main()。

填空,让我们填写的就是map、reduce函数。剩下的则是由整个mapreduce框架来完成。

首先从map函数入手

// map类
static class MyMapper extends
Mapper<LongWritable, Text, Text, LongWritable> {
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

final String[] splited = value.toString().split(" ");
org.apache.hadoop.mapreduce.Counter count= context.getCounter("map中的值value", value.toString());
count.increment(1l);

for (String word : splited) {
context.write(new Text(word), new LongWritable(1L));

}

}

}

我们知道map接受了数据,那么这个数据是是怎么个数据??

假如我们有下面数据

hello www.aboutyun.com hello word
hello hadoop
hello mapreduce

我们map函数如下:
map(LongWritable key, Text value, Context context)
上面有三个参数,其中key是偏移量,这里不是我们的重点,对于Context不了解,可以查看hadoop开发必读:认识Context类的作用.
我们这里重点讲value,这个value到底是什么?

hello www.aboutyun.com hello word

还是

hello

还是

hello www.aboutyun.com

我们在做填空题,框架之外的我们还没有看到,所以我需要明白value到底是什么?
下面我们开始运行程序

运行程序,这里让我们犯愁了,为什么,因为在运行这个程序之前,你有环境了吗?没有,

一、搭建环境

参考新手指导:Windows上使用Eclipse远程连接Hadoop进行程序开发,首先搭建环境,这里还用到了eclipse插件,

二、插件下载

hadoop-eclipse-plugin-2.2.0.jar

链接: http://pan.baidu.com/s/1sjQ6Nnv 密码: uvwx
更多插件:hadoop家族、strom、spark、Linux、flume等jar包、安装包汇总下载(持续更新)

三、遇到问题

环境搭建好了,我们开发运行程序了,遇到各种问题该如何解决,可参考

Win7 Eclipse调试Centos Hadoop2.2-Mapreduce出现问题解决方案

在window中,我们遇到最多的问题就是缺少

1.winutils.exe

2.hadoop.dll

hadoop-common-2.2.0-bin-master.zip

(273.06 KB, 下载次数: 15, 售价: 2 云币)

上面下载附件,上面没有必要都放到hadoop_home/bin下面,缺什么我们放到里面就ok了。我们的路径是

  1. D:\hadoop2\hadoop-2.2.0\bin

复制代码

环境有了,我们需要准备数据以及mapreduce程序

一、准备数据
首先第一步我们上传待分析文件:

第二步:找到文件

第三步:上传成功

二、mapreduce函数分析

map函数:

static class MyMapper extends
                        Mapper<LongWritable, Text, Text, LongWritable> {
                protected void map(LongWritable key, Text value, Context context)
                                throws IOException, InterruptedException {
                        
                        
                        final String[] splited = value.toString().split(" ");
                        org.apache.hadoop.mapreduce.Counter count= context.getCounter("map中的值value",  value.toString());
                        count.increment(1l);

               
                        for (String word : splited) {
                                context.write(new Text(word), new LongWritable(1L));

}

}

我们看到上面红字部分他的作用是什么,这也正是很多犯愁的地方,因为我们想把我们想看到的数据输出到eclipse的控制台,可惜的是 System.out.println并不如我们愿,所以我们可以使用 getCounter输出我们想看到的内容:

  1. org.apache.hadoop.mapreduce.Counter count= context.getCounter("map中的值value", value.toString());
  2. count.increment(1l);

复制代码

这里我们主要验证:value值传递过来到底是什么?
运行之后下面结果
结果分析:

  1. map中的值value
  2. hello hadoop=1
  3. hello mapreduce=1
  4. hello www.aboutyun.com hello word=1

复制代码

上面我们看到输出数据输出了3次,也就是说,我们的map执行了3次,那么我们的原始数据是什么情况,看下图:

结论:
从这里我们看到有多少行就有多少个map,也就是说,系统默认一行调用一个map函数,value值为一行的数据

同理reduce也是如此:

// reduce类
        static class MyReduce extends
                        Reducer<Text, LongWritable, Text, LongWritable> {
                @Override
                protected void reduce(Text k2, java.lang.Iterable<LongWritable> v2s,
                                Context ctx) throws java.io.IOException, InterruptedException {
                        
                        long times = 0L;
                        for (LongWritable count : v2s) {
                                times += count.get();
                                
                                
                        }
                      
 org.apache.hadoop.mapreduce.Counter count1=
ctx.getCounter("reduce中的值"+k2.toString(), new
LongWritable(times).toString());
                        count1.increment(1l);

                        ctx.write(k2, new LongWritable(times));

}

}

这里我们主要验证:reduce中key出现的次数:

从上面结果我们看到
hadoop:                      1个
hello :                           4个
mapreduce:               1个
www.aboutyun.com :1个

这里我们并没有通过mapreduce的输出文件来查看,而是通过getCounter来实现的。
我们来看看reduce的输出文结果:

这里在做一个有趣的实验:
为什么那,因为很多初学者,可能会遇到一个问题,就是reduce的输出结果不正确,为什么会不正确,下面我们对reduce稍微做一些改动:

static class MyReduce extends
Reducer<Text, LongWritable, Text, LongWritable> {
@Override
protected void reduce(Text k2, java.lang.Iterable<LongWritable> v2s,
Context ctx) throws java.io.IOException, InterruptedException {

long times = 0L;
for (LongWritable count : v2s) {
times += count.get();
org.apache.hadoop.mapreduce.Counter count1= ctx.getCounter("reduce中的值"+k2.toString(), new LongWritable(times).toString());
count1.increment(1l);
ctx.write(k2, new LongWritable(times));
}

}

}

我们查看下面结果:

我们来看看reduce的输出文结果:

仔细对比我们把

org.apache.hadoop.mapreduce.Counter count1= ctx.getCounter("reduce中的值"+k2.toString(), new LongWritable(times).toString());
count1.increment(1l);

ctx.write(k2, new LongWritable(times));

一个放在循环内,一个放在了循环外,所以产生了下面的结果。这是很多初学者,在学习之初可能会碰到的问题

mapreduce.zip

(1.18 KB, 下载次数: 28)

时间: 2024-09-15 02:03:23

通过实例让你真正明白mapreduce---填空式、分布(分割)编程的相关文章

Hadoop MapReduce链式实践--ChainReducer

版本:CDH5.0.0,HDFS:2.3.0,Mapreduce:2.3.0,Yarn:2.3.0. 场景描述:求一组数据中按照不同类别的最大值,比如,如下的数据: data1: A,10 A,11 A,12 A,13 B,21 B,31 B,41 B,51 data2: A,20 A,21 A,22 A,23 B,201 B,301 B,401 B,501 最后输出为: A,23 B,501 假如这样的逻辑的mapreduce数据流如下: 假设C组数据比较多,同时假设集群有2个节点,那么这个任

MapReduce示例式理解

从word count这个实例理解MapReduce. MapReduce大体上分为六个步骤:input, split, map, shuffle, reduce, output.细节描述如下: 输入(input):如给定一个文档,包含如下四行:Hello JavaHello CHello JavaHello C++2. 拆分(split):将上述文档中每一行的内容转换为key-value对,即: 0 - Hello Java1 - Hello C2 – Hello Java3 - Hello

Hadoop MapReduce(WordCount) Java编程

编写WordCount程序数据如下: hello beijing hello shanghai hello chongqing hello tianjin hello guangzhou hello shenzhen ... 1.WCMapper: package com.hadoop.testHadoop; import java.io.IOException; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop

Hadoop MapReduce(FlowCount) Java编程

编写PhoneFlow程序,计算手机上行流量.下行流量以及总流量,数据如下: 13685295623 122  201 13985295600 102  11 13885295622 22   101 13785295633 120  20 1.FlowMapper: package com.hadoop.flow; import java.io.IOException; import org.apache.hadoop.io.LongWritable; import org.apache.ha

(转)Hadoop MapReduce链式实践--ChainReducer

版本:CDH5.0.0,HDFS:2.3.0,Mapreduce:2.3.0,Yarn:2.3.0. 场景描述:求一组数据中按照不同类别的最大值,比如,如下的数据: data1: [plain] view plaincopy A,10 A,11 A,12 A,13 B,21 B,31 B,41 B,51 data2: [plain] view plaincopy A,20 A,21 A,22 A,23 B,201 B,301 B,401 B,501 最后输出为: [plain] view pla

2018-07-30期 MapReduce分区(Partitioner)编程案例

1.EmpSalaryBean 对象 package cn.sjq.mr.part; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.Writable; /** * 定义一个员工薪水的JavaBean,并实现MapReduce的Writable序列化接口 * @author songjq * */ public class Em

MapReduce编程实例5

前提准备: 1.hadoop安装运行正常.Hadoop安装配置请参考:Ubuntu下 Hadoop 1.2.1 配置安装 2.集成开发环境正常.集成开发环境配置请参考 :Ubuntu 搭建Hadoop源码阅读环境 MapReduce编程实例: MapReduce编程实例(一),详细介绍在集成环境中运行第一个MapReduce程序 WordCount及代码分析 MapReduce编程实例(二),计算学生平均成绩 MapReduce编程实例(三),数据去重 MapReduce编程实例(四),排序 M

初步掌握MapReduce的架构及原理

目录 1.MapReduce定义 2.MapReduce来源 3.MapReduce特点 4.MapReduce实例 5.MapReduce编程模型 6.MapReduce 内部逻辑 7.MapReduce架构 8.MapReduce框架的容错性 9.MapReduce资源组织方式 1.MapReduce 定义 Hadoop 中的 MapReduce是一个使用简单的软件框架,基于它写出来的应用程序能够运行在由上千个商用机器组成的大型集群上,并以一种可靠容错式并行处理TB级别的数据集 2.MapR

Hadoop之 - 剖析 MapReduce 作业的运行机制(MapReduce 2)

在0.20版本及更早期的系列中,mapred.job.tracker 决定了执行MapReduce程序的方式.如果这个配置属性被设置为local(默认值),则使用本地的作业运行器.运行器在耽搁JVM上运行整个作业.它被设计用来在小的数据集上测试和运行MapReduce程序. 如果 mapred.job.tracker 被设置为用冒号分开的主机和端口对(主机:端口),那么该配置属性就被解释为一个jobtracker地址,运行器则将作业提交给该地址的jobtracker. Hadoop 2.x引入了