Applied Nonparametric Statistics-lec3

Ref:

https://onlinecourses.science.psu.edu/stat464/print/book/export/html/4



使用非参数方法的优势:

1. 对总体分布做的假设少,所以总体分布未知也可以;

2. 容易做;

3. 一般对离群值更具鲁棒性robust;

4. 适用于数据中包含ranks, ordinal or categorical的。

In a skewed distribution, the population median, η, is a better typical value than the population mean μ.

Sign-test / Binomial-test:

下面是一个实例:

这个实例,我们先用t-test。做的假设是,数据为正态分布,所以使用t-statistics,检验的是均值μ。

然后,考虑到数据是有偏的,我们使用中值median,然后用sign-test。

Solution:这样计算的概率是p值。如此,我们不能拒绝原假设。

当数据量大时:

If np ≥ 10 and n(1 - p)  ≥ 10, we can use the Normal distribution to approximate the Binomial.

然后可以使用z-score。注意,此时方差和均值的取值。后面假设检验的部分与lec2中内容一致。

求置信区间:

Type I error是错误拒绝原假设;Type II error是错误接受原假设。

The significance level of the test is α = P(Type I error)

Power = 1 - P(Type II error)

如果两个test的α相等,那么power大的那个更好。

在实际操作中,使用R语言的包BSDA

SIGN.test(x, md = 0, alternative = "two.sided", conf.level = 0.95)
# x - is the object where you store your data
# md - the hypothesized median (default is 0)
# alternative - either "two.sided", "greater", or "less than"
# conf.level  - the desired confidence level.

 

时间: 2024-11-05 15:42:46

Applied Nonparametric Statistics-lec3的相关文章

Applied Nonparametric Statistics

参考网址: https://onlinecourses.science.psu.edu/stat464/node/2 Binomial Distribution Normal Distribution 将正态分布标准化.这也就是Z-score Confidence Interval 在上面的前提下,假设σ^2已知,现在构造μ的置信区间: 利用上面Z-score的公式,且 套入公式,解出μ.注意此处的标准差用的是σ/根号n.最终解出: 当σ^2=Var(X)不知道时,我们可以用样本的标准差,计算Z

Applied Nonparametric Statistics-lec8

Ref:https://onlinecourses.science.psu.edu/stat464/print/book/export/html/11 additive model value = typical value + row effect + column effect + residual predicate value = typical value + row effect + column effect 其中value是我们关注的值,typical value是overall

Applied Nonparametric Statistics-lec4

Ref: https://onlinecourses.science.psu.edu/stat464/print/book/export/html/5 Two sample test 直接使用R的t-test t.test(n, t, alternative="two.sided", var.equal=T) permutation test 当我们判断两个样本的均值或者中值是否相等时,如果样本数量足够大,可以使用t-test. 但是,当两个样本的数量都很小时,它们的分布可能是有偏的,

Applied Nonparametric Statistics-lec9

Ref:https://onlinecourses.science.psu.edu/stat464/print/book/export/html/12 前面我们考虑的情况是:response是连续的,variable是离散的.举例:如果打算检查GPA的中位数是否与学生坐在教室的位置有关, 那么GPA的中位数是连续的,是响应变量:学生坐的位置(前中后)是离散的,是解释变量. 现在考虑解释变量也是连续的情况,即检查两个连续变量之间的因果关系.其中,我们最关心的是关系的强弱和方向. 首先,我们考虑线性

Applied Nonparametric Statistics-lec6

Ref: https://onlinecourses.science.psu.edu/stat464/print/book/export/html/8 前面都是对一两个样本的检查,现在考虑k个样本的情况,我们的假设是: Analysis of Variance (ANOVA) assumptions are: Groups are independent Distributions are Normally distributed Groups have equal variances 那么我们

Applied Nonparametric Statistics-lec2

Ref: https://onlinecourses.science.psu.edu/stat464/print/book/export/html/3 The Binomial Distribution in R: # return PMF. prob is the probability of success . x can be a list dbinom(x, size, prob) # CDF pbinom(x, size, prob) # returns a value for a p

psu online course

https://onlinecourses.science.psu.edu/statprogram/programs Graduate Online Course Overviews Printer-friendly versionPrinter-friendly version Picture of Thomas Building where the Eberly College of Science and the Department of Statistics resides.The D

Machine and Deep Learning with Python

Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstitions cheat sheet Introduction to Deep Learning with Python How to implement a neural network How to build and run your first deep learning network Neur

数学类杂志SCI2013-2014影响因子

ISSN Abbreviated Journal Title Full Title Category Subcategory Country total Cites IF        2013-2014 IF 2012-2013 IF 2011-2012 IF 2010-2011 IF 2009-2010 IF 2008-2009 IF 2007-2008 5-Year Impact Factor Immediacy Index Articles Cited Half-Life Eigenfa