sparklyr-R语言访问Spark的另外一种方法

  • Connect to Spark from R. The sparklyr package provides a 
    complete dplyr backend.
  • Filter and aggregate Spark datasets then bring them into R for 
    analysis and visualization.
  • Use Spark<u+2019>s distributed machine learning library from R.
  • Create extensions that call the full Spark API and provide 
    interfaces to Spark packages.

Installation

You can install the sparklyr package from CRAN as follows:

install.packages("sparklyr")

You should also install a local version of Spark for development purposes:

library(sparklyr)
spark_install(version = "1.6.2")

To upgrade to the latest version of sparklyr, run the following command and restart your r session:

devtools::install_github("rstudio/sparklyr")

If you use the RStudio IDE, you should also download the latest preview release of the IDE which includes several enhancements for interacting with Spark (see the RStudio IDE section below for more details).

Connecting to Spark

You can connect to both local instances of Spark as well as remote Spark clusters. Here we<u+2019>ll connect to a local instance of Spark via the spark_connect function:

library(sparklyr)
sc <- spark_connect(master = "local")

The returned Spark connection (sc) provides a remote dplyr data source to the Spark cluster.

For more information on connecting to remote Spark clusters see the Deployment section of the sparklyr website.

Using dplyr

We can new use all of the available dplyr verbs against the tables within the cluster.

We<u+2019>ll start by copying some datasets from R into the Spark cluster (note that you may need to install the nycflights13 and Lahman packages in order to execute this code):

install.packages(c("nycflights13", "Lahman"))
library(dplyr)
iris_tbl <- copy_to(sc, iris)
flights_tbl <- copy_to(sc, nycflights13::flights, "flights")
batting_tbl <- copy_to(sc, Lahman::Batting, "batting")
src_tbls(sc)
## [1] "batting" "flights" "iris"

To start with here<u+2019>s a simple filtering example:

# filter by departure delay and print the first few records
flights_tbl %>% filter(dep_delay == 2)
## Source:   query [6,233 x 19]
## Database: spark connection master=local[8] app=sparklyr local=TRUE
##
##     year month   day dep_time sched_dep_time dep_delay arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>
## 1   2013     1     1      517            515         2      830
## 2   2013     1     1      542            540         2      923
## 3   2013     1     1      702            700         2     1058
## 4   2013     1     1      715            713         2      911
## 5   2013     1     1      752            750         2     1025
## 6   2013     1     1      917            915         2     1206
## 7   2013     1     1      932            930         2     1219
## 8   2013     1     1     1028           1026         2     1350
## 9   2013     1     1     1042           1040         2     1325
## 10  2013     1     1     1231           1229         2     1523
## # ... with 6,223 more rows, and 12 more variables: sched_arr_time <int>,
## #   arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>,
## #   origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## #   minute <dbl>, time_hour <dbl>

Introduction to dplyr provides additional dplyr examples you can try. For example, consider the last example from the tutorial which plots data on flight delays:

delay <- flights_tbl %>%
  group_by(tailnum) %>%
  summarise(count = n(), dist = mean(distance), delay = mean(arr_delay)) %>%
  filter(count > 20, dist < 2000, !is.na(delay)) %>%
  collect

# plot delays
library(ggplot2)
ggplot(delay, aes(dist, delay)) +
  geom_point(aes(size = count), alpha = 1/2) +
  geom_smooth() +
  scale_size_area(max_size = 2)
## `geom_smooth()` using method = ‘gam‘

Window Functions

dplyr window functions are also supported, for example:

batting_tbl %>%
  select(playerID, yearID, teamID, G, AB:H) %>%
  arrange(playerID, yearID, teamID) %>%
  group_by(playerID) %>%
  filter(min_rank(desc(H)) <= 2 & H > 0)
## Source:   query [2.562e+04 x 7]
## Database: spark connection master=local[8] app=sparklyr local=TRUE
## Groups: playerID
##
##     playerID yearID teamID     G    AB     R     H
##        <chr>  <int>  <chr> <int> <int> <int> <int>
## 1  abbotpa01   2000    SEA    35     5     1     2
## 2  abbotpa01   2004    PHI    10    11     1     2
## 3  abnersh01   1992    CHA    97   208    21    58
## 4  abnersh01   1990    SDN    91   184    17    45
## 5  abreujo02   2015    CHA   154   613    88   178
## 6  abreujo02   2014    CHA   145   556    80   176
## 7  acevejo01   2001    CIN    18    34     1     4
## 8  acevejo01   2004    CIN    39    43     0     2
## 9  adamsbe01   1919    PHI    78   232    14    54
## 10 adamsbe01   1918    PHI    84   227    10    40
## # ... with 2.561e+04 more rows

For additional documentation on using dplyr with Spark see the dplyr section of the sparklyr website.

Using SQL

It<u+2019>s also possible to execute SQL queries directly against tables within a Spark cluster. The spark_connection object implements a DBI interface for Spark, so you can use dbGetQuery to execute SQL and return the result as an R data frame:

library(DBI)
iris_preview <- dbGetQuery(sc, "SELECT * FROM iris LIMIT 10")
iris_preview
##    Sepal_Length Sepal_Width Petal_Length Petal_Width Species
## 1           5.1         3.5          1.4         0.2  setosa
## 2           4.9         3.0          1.4         0.2  setosa
## 3           4.7         3.2          1.3         0.2  setosa
## 4           4.6         3.1          1.5         0.2  setosa
## 5           5.0         3.6          1.4         0.2  setosa
## 6           5.4         3.9          1.7         0.4  setosa
## 7           4.6         3.4          1.4         0.3  setosa
## 8           5.0         3.4          1.5         0.2  setosa
## 9           4.4         2.9          1.4         0.2  setosa
## 10          4.9         3.1          1.5         0.1  setosa

Machine Learning

You can orchestrate machine learning algorithms in a Spark cluster via the machine learning functions within sparklyr. These functions connect to a set of high-level APIs built on top of DataFrames that help you create and tune machine learning workflows.

Here<u+2019>s an example where we use ml_linear_regression to fit a linear regression model. We<u+2019>ll use the built-in mtcars dataset, and see if we can predict a car<u+2019>s fuel consumption (mpg) based on its weight (wt), and the number of cylinders the engine contains (cyl). We<u+2019>ll assume in each case that the relationship between mpg and each of our features is linear.

# copy mtcars into spark
mtcars_tbl <- copy_to(sc, mtcars)

# transform our data set, and then partition into ‘training‘, ‘test‘
partitions <- mtcars_tbl %>%
  filter(hp >= 100) %>%
  mutate(cyl8 = cyl == 8) %>%
  sdf_partition(training = 0.5, test = 0.5, seed = 1099)

# fit a linear model to the training dataset
fit <- partitions$training %>%
  ml_linear_regression(response = "mpg", features = c("wt", "cyl"))
## * No rows dropped by ‘na.omit‘ call
fit
## Call: ml_linear_regression(., response = "mpg", features = c("wt", "cyl"))
##
## Coefficients:
## (Intercept)          wt         cyl
##   37.066699   -2.309504   -1.639546

For linear regression models produced by Spark, we can use summary() to learn a bit more about the quality of our fit, and the statistical significance of each of our predictors.

summary(fit)
## Call: ml_linear_regression(., response = "mpg", features = c("wt", "cyl"))
##
## Deviance Residuals::
##     Min      1Q  Median      3Q     Max
## -2.6881 -1.0507 -0.4420  0.4757  3.3858
##
## Coefficients:
##             Estimate Std. Error t value  Pr(>|t|)
## (Intercept) 37.06670    2.76494 13.4059 2.981e-07 ***
## wt          -2.30950    0.84748 -2.7252   0.02341 *
## cyl         -1.63955    0.58635 -2.7962   0.02084 *
## ---
## Signif. codes:  0 ‘***‘ 0.001 ‘**‘ 0.01 ‘*‘ 0.05 ‘.‘ 0.1 ‘ ‘ 1
##
## R-Squared: 0.8665
## Root Mean Squared Error: 1.799

Spark machine learning supports a wide array of algorithms and feature transformations and as illustrated above it<u+2019>s easy to chain these functions together with dplyr pipelines. To learn more see the machine learning section.

Reading and Writing Data

You can read and write data in CSV, JSON, and Parquet formats. Data can be stored in HDFS, S3, or on the local filesystem of cluster nodes.

temp_csv <- tempfile(fileext = ".csv")
temp_parquet <- tempfile(fileext = ".parquet")
temp_json <- tempfile(fileext = ".json")

spark_write_csv(iris_tbl, temp_csv)
iris_csv_tbl <- spark_read_csv(sc, "iris_csv", temp_csv)

spark_write_parquet(iris_tbl, temp_parquet)
iris_parquet_tbl <- spark_read_parquet(sc, "iris_parquet", temp_parquet)

spark_write_json(iris_tbl, temp_json)
iris_json_tbl <- spark_read_json(sc, "iris_json", temp_json)

src_tbls(sc)
## [1] "batting"      "flights"      "iris"         "iris_csv"
## [5] "iris_json"    "iris_parquet" "mtcars"

Extensions

The facilities used internally by sparklyr for its dplyr and machine learning interfaces are available to extension packages. Since Spark is a general purpose cluster computing system there are many potential applications for extensions (e.g.<u+00a0>interfaces to custom machine learning pipelines, interfaces to 3rd party Spark packages, etc.).

Here<u+2019>s a simple example that wraps a Spark text file line counting function with an R function:

# write a CSV
tempfile <- tempfile(fileext = ".csv")
write.csv(nycflights13::flights, tempfile, row.names = FALSE, na = "")

# define an R interface to Spark line counting
count_lines <- function(sc, path) {
  spark_context(sc) %>%
    invoke("textFile", path, 1L) %>%
      invoke("count")
}

# call spark to count the lines of the CSV
count_lines(sc, tempfile)
## [1] 336777

To learn more about creating extensions see the Extensions section of the sparklyr website.

Table Utilities

You can cache a table into memory with:

tbl_cache(sc, "batting")

and unload from memory using:

tbl_uncache(sc, "batting")

Connection Utilities

You can view the Spark web console using the spark_web function:

spark_web(sc)

You can show the log using the spark_log function:

spark_log(sc, n = 10)
## 17/02/03 15:34:17 INFO DAGScheduler: Submitting 1 missing tasks from ResultStage 91 (/var/folders/fz/v6wfsg2x1fb1rw4f6r0x4jwm0000gn/T//RtmpZqMbDE/file8f2b280ac4e5.csv MapPartitionsRDD[363] at textFile at NativeMethodAccessorImpl.java:-2)
## 17/02/03 15:34:17 INFO TaskSchedulerImpl: Adding task set 91.0 with 1 tasks
## 17/02/03 15:34:17 INFO TaskSetManager: Starting task 0.0 in stage 91.0 (TID 177, localhost, partition 0,PROCESS_LOCAL, 2430 bytes)
## 17/02/03 15:34:17 INFO Executor: Running task 0.0 in stage 91.0 (TID 177)
## 17/02/03 15:34:17 INFO HadoopRDD: Input split: file:/var/folders/fz/v6wfsg2x1fb1rw4f6r0x4jwm0000gn/T/RtmpZqMbDE/file8f2b280ac4e5.csv:0+33313106
## 17/02/03 15:34:17 INFO Executor: Finished task 0.0 in stage 91.0 (TID 177). 2082 bytes result sent to driver
## 17/02/03 15:34:17 INFO TaskSetManager: Finished task 0.0 in stage 91.0 (TID 177) in 116 ms on localhost (1/1)
## 17/02/03 15:34:17 INFO DAGScheduler: ResultStage 91 (count at NativeMethodAccessorImpl.java:-2) finished in 0.117 s
## 17/02/03 15:34:17 INFO TaskSchedulerImpl: Removed TaskSet 91.0, whose tasks have all completed, from pool
## 17/02/03 15:34:17 INFO DAGScheduler: Job 61 finished: count at NativeMethodAccessorImpl.java:-2, took 0.119612 s

Finally, we disconnect from Spark:

spark_disconnect(sc)

RStudio IDE

The latest RStudio Preview Release of the RStudio IDE includes integrated support for Spark and the sparklyr package, including tools for:

  • Creating and managing Spark connections
  • Browsing the tables and columns of Spark DataFrames
  • Previewing the first 1,000 rows of Spark DataFrames

Once you<u+2019>ve installed the sparklyr package, you should find a new Spark pane within the IDE. This pane includes a New Connection dialog which can be used to make connections to local or remote Spark instances:

Once you<u+2019>ve connected to Spark you<u+2019>ll be able to browse the tables contained within the Spark cluster:

The Spark DataFrame preview uses the standard RStudio data viewer:

The RStudio IDE features for sparklyr are available now as part of the RStudio Preview Release.

Using H2O

rsparkling is a CRAN package from H2O that extends sparklyr to provide an interface into Sparkling Water. For instance, the following example installs, configures and runs h2o.glm:

options(rsparkling.sparklingwater.version = "1.6.8")

library(rsparkling)
library(sparklyr)
library(dplyr)
library(h2o)

sc <- spark_connect(master = "local", version = "1.6.2")
mtcars_tbl <- copy_to(sc, mtcars, "mtcars")

mtcars_h2o <- as_h2o_frame(sc, mtcars_tbl, strict_version_check = FALSE)

mtcars_glm <- h2o.glm(x = c("wt", "cyl"),
                      y = "mpg",
                      training_frame = mtcars_h2o,
                      lambda_search = TRUE)
mtcars_glm
## Model Details:
## ==============
##
## H2ORegressionModel: glm
## Model ID:  GLM_model_R_1486164877174_1
## GLM Model: summary
##     family     link                              regularization
## 1 gaussian identity Elastic Net (alpha = 0.5, lambda = 0.1013 )
##                                                                lambda_search
## 1 nlambda = 100, lambda.max = 10.132, lambda.min = 0.1013, lambda.1se = -1.0
##   number_of_predictors_total number_of_active_predictors
## 1                          2                           2
##   number_of_iterations training_frame
## 1                    0   frame_rdd_33
##
## Coefficients: glm coefficients
##       names coefficients standardized_coefficients
## 1 Intercept    38.941654                 20.090625
## 2       cyl    -1.468783                 -2.623132
## 3        wt    -3.034558                 -2.969186
##
## H2ORegressionMetrics: glm
## ** Reported on training data. **
##
## MSE:  6.017684
## RMSE:  2.453097
## MAE:  1.940985
## RMSLE:  0.1114801
## Mean Residual Deviance :  6.017684
## R^2 :  0.8289895
## Null Deviance :1126.047
## Null D.o.F. :31
## Residual Deviance :192.5659
## Residual D.o.F. :29
## AIC :156.2425
spark_disconnect(sc)

Connecting through Livy

Livy enables remote connections to Apache Spark clusters. Connecting to Spark clusters through Livy is under experimental development in sparklyr. Please post any feedback or questions as a GitHub issue as needed.

Before connecting to Livy, you will need the connection information to an existing service running Livy. Otherwise, to test livy in your local environment, you can install it and run it locally as follows:

livy_install()
livy_service_start()

To connect, use the Livy service address as master and method = "livy" in spark_connect. Once connection completes, use sparklyr as usual, for instance:

sc <- spark_connect(master = "http://localhost:8998", method = "livy")
copy_to(sc, iris)
## Source:   query [150 x 5]
## Database: spark connection master=http://localhost:8998 app= local=FALSE
##
##    Sepal_Length Sepal_Width Petal_Length Petal_Width Species
##           <dbl>       <dbl>        <dbl>       <dbl>   <chr>
## 1           5.1         3.5          1.4         0.2  setosa
## 2           4.9         3.0          1.4         0.2  setosa
## 3           4.7         3.2          1.3         0.2  setosa
## 4           4.6         3.1          1.5         0.2  setosa
## 5           5.0         3.6          1.4         0.2  setosa
## 6           5.4         3.9          1.7         0.4  setosa
## 7           4.6         3.4          1.4         0.3  setosa
## 8           5.0         3.4          1.5         0.2  setosa
## 9           4.4         2.9          1.4         0.2  setosa
## 10          4.9         3.1          1.5         0.1  setosa
## # ... with 140 more rows
spark_disconnect(sc)

Once you are done using livy locally, you should stop this service with:

livy_service_stop()

To connect to remote livy clusters that support basic authentication connect as:

config <- livy_config_auth("<username>", "<password">)
sc <- spark_connect(master = "<address>", method = "livy", config = config)
spark_disconnect(sc)

Links

License

Apache License 2.0 | file LICENSE

Developers

  • Javier Luraschi 
    Author, maintainer
  • Kevin Ushey 
    Author
  • JJ Allaire 
    Author
  • The Apache Software Foundation 
    Author, copyright<u+00a0>holder
  • All authors...

Dev status

Developed by Javier Luraschi, Kevin Ushey, JJ Allaire, The Apache Software Foundation.

Site built with pkgdown.

参考 http://spark.rstudio.com/

http://alitrack.com/2016/11/01/sparklyr-r%E8%AF%AD%E8%A8%80%E8%AE%BF%E9%97%AEspark%E7%9A%84%E5%8F%A6%E5%A4%96%E4%B8%80%E7%A7%8D%E6%96%B9%E6%B3%95/

时间: 2024-10-06 20:58:33

sparklyr-R语言访问Spark的另外一种方法的相关文章

shell中调用R语言并传入参数的两种方法

第一种: Rscript myscript.R R脚本的输出 第二种: R CMD BATCH myscript.R # Check the output cat myscript.Rout 调用R脚本的全部控制台log 传入参数: 在脚本中add args<-commandArgs(TRUE) 然后shell中: Rscript myscript.R arg1 arg2 arg3 注意取出来的参数是所有参数连在一起的character

R语言中最简单的向量赋值方法

R语言中最简单的向量赋值方法简介: 1. 生成等差数列的向量x x <- 1:10 #将x向量赋值为1 2 3 4 5 6 7 8 9 10 结果为 > x [1] 1 2 3 4 5 6 7 8 9 10 2. 将x的值全部修改成0 x[] <- 0 #非常简洁的赋值方法,建议使用 x[1:length(x)] <- 0 #不建议使用的赋值方法 结果为: > x[] <- 0 > x [1] 0 0 0 0 0 0 0 0 0 0 3.使用seq函数 x <

struts2的action访问servlet API的三种方法

学IT技术,就是要学习... 今天无聊看看struts2,发现struts2的action访问servlet API的三种方法: 1.Struts2提供的ActionContext类 Object get(Object key);可以获取request属性 Map getSession():可以得到session属性 Map getAppliction():可以得到ServletContext实例 2.action类实现 ServletContextAware,ServletRequestAwa

HTTPS的证书未经权威机构认证的情况下,访问HTTPS站点的两种方法

注意一下文章中提到的jsse在jdk1.4以后已经集成了,不必纠结. 摘 要 JSSE是一个SSL和TLS的纯Java实现,通过JSSE可以很容易地编程实现对HTTPS站点的访问.但是,如果该站点的证书未经权威机构的验证,JSSE将拒绝信任该证书从而不能访问HTTPS站点.本文在简要介绍JSSE的基础上提出了两种解决该问题的方法. 引言 过去的十几年,网络上已经积累了大量的Web应用.如今,无论是整合原有的Web应用系统,还是进行新的Web开发,都要求通过编程来访问某些Web页面.传统的方法是使

Action访问Servlet API的三种方法

一.为什么要访问Servlet API ? Struts2的Action并未与Servlet API进行耦合,这是Struts2 的一个改良,从而方便了单独对Action进行测试.但是对于Web控制器而言,不访问action是不行的,Struts提供了一种比较简单的方式来访问Servlet API . 二.通常我们需要访问的Servlet API 是 HttpSession.HttpservletRequest.ServletContext,分别对应了JSP内置对象 session,reques

MFC 访问控件的几种方法

访问控件的方法 控件是一种交互的工具,应用程序需要通过某种方法来访问控件以对其进行查询和设置.访问控件有四种方法: 利用对话框的数据交换功能访问控件.这种方法适用于自动创建的控件.先用ClassWizard为对话框类加入与控件对应的数据成员变量,然后在适当的时侯调用UpdateData,就可以实现对话框和控件的数据交换.这种方法只能交换数据,不能对控件进行全面的查询和设置,而且该方法不是针对某个控件,而是针对所有参与数据交换的控件.另外,对于新型的Win32控件,不能用ClassWizard创建

R语言:用简单的文本处理方法优化我们的读书体验

前言 延续之前的用R语言读琅琊榜小说,继续讲一下利用R语言做一些简单的文本处理.分词的事情.其实就是继续讲一下用R语言读书的事情啦,讲讲怎么用它里面简单的文本处理方法,来优化我们的读书体验,如果读邮件和读代码也算阅读的话..用的代码超级简单,不涉及其他包 这里讲两个示例,结尾再来吐槽和总结. 1)R-Blogger订阅邮件拆分 2) R代码库快速阅读方法 不在博客园上阅读时才会看到的,这篇博文归 http://www.cnblogs.com/weibaar所有 仅保证在博客园博客上的排版干净利索

R语言的各种报错及其解决方法

前言: 人不能在同个地方栽两次跟头,那样的生活效率太低.所以我一直以来都保持着随手记录的习惯.现在把近半个月来遇到的关于R语言的错误分享一下,希望能帮助到一些朋友,同时也希望各位朋友把遇到的已解决的.未解决的错误提出来一下,完善彼此的知识点,谢谢! 目录: 连接数据库报错:negative length vectors are not allowed 连接数据库报错:first argument is not an open RODBC channel 连接数据库报错:incorrect num

C语言结构体定义的几种方法

什么是结构体? 在C语言中,结构体(struct)指的是一种数据结构,是C语言中聚合数据类型(aggregate data type)的一类.结构体可以被声明为变量.指针或数组等,用以实现较复杂的数据结构.结构体同时也是一些元素的集合,这些元素称为结构体的成员(member),且这些成员可以为不同的类型,成员一般用名字访问. 结构体的定义: C语言结构体类型的定义模板大概为: struct 类型名{ 成员表列 } 变量; 在成员表列中可以是几种基本数据类型,也可以是结构体类型. struct 类