机器学习笔记- from Andrew Ng的教学视频

最近算是一段空闲期,不想荒废,记得之前有收藏一个机器学习的链接Andrew Ng的网易公开课,其中的overfiting部分做组会报告时涉及到了,这几天有时间决定把这部课程学完,好歹算是有个粗浅的认识。

本来想去网上查一查机器学习的书籍,发现李航的《统计学习方法》和PRML(Pattern Recognition And Machine Learning)很受人推崇,有空再看吧。

然后在图书馆碰到了天佑,给我推荐了coursera这个网站,上面有Andrew Ng针对网络版的机器学习教程,挺好的。以下笔记基于此课程。

https://www.coursera.org/course/ml

week one:

a:machine learning

Supervised learning:Regression Classification

Unsupervised learning:cluster

and Reinforcement learning, recommender systems

b: Linear regression with one variable

Linear regression:

Hypothesis,Cost function(为何最小二乘估计中分母有个系数2),Contour plots(轮廓图中一条线上的值相等)

Gradient descent:

alpha:learning rate

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

Gradient descent for linear regression:

convex Function for it.

“Batch” Gradient Descent:

Batch: Each step of gradient descent uses all the training examples.

c: Linear Algebra Review

If A is an m x m matrix, and if it has an inverse

(如何判断一个矩阵存不存在逆矩阵)

Matrices that don’t have an inverse are “singular” or “degenerate”

时间: 2024-11-13 10:23:14

机器学习笔记- from Andrew Ng的教学视频的相关文章

机器学习笔记(二)- from Andrew Ng的教学视频

省略了Octave的使用方法结束,以后用得上再看吧 week three: Logistic Regression: 用于0-1分类 Hypothesis Representation: :Sigmoid function or Logistic function Decision boundary: theta 的转置*小x>=0 即为boundary may :Non-linear decision boundaries,构造x的多项式项 Cost function: Simplified

机器学习笔记(三)- from Andrew Ng的教学视频

week four: Non-linear hypotheses:Neural Networks -->x1 and x2 x1 XNOR x2 ->a1->x1 and x2;a2->(not x1) and (not x2);->h(x),a1 OR a2 the method is a new approach cost function: 总的来说,后向传播的神经网络中的delt的求解就是对于cost函数对每个参数求偏导的过程,所以具有理论上的可行性.

Andrew Ng Machine Learning - Week 3:Logistic Regression & Regularization

此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记.力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 1: Introduction 笔记:http://blog.csdn.net/ironyoung/article/details/46845233 We

Andrew Ng Machine Learning 专题【Linear Regression】

此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记. 力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 3: Logistic Regression & Regularization 笔记:http://blog.csdn.net/ironyoung/ar

Andrew Ng Machine Learning - Week 2

此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记.力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 2 Multivariate Linear Regression Week 1 讨论仅一个特征,即仅有一个未知量x影响了目标y的取值.如果现在有很多特征?

Andrew Ng Machine Learning - Week 4 & 5- Neural Networks

此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记.力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 1: Introduction 笔记:http://blog.csdn.net/ironyoung/article/details/46845233 We

Andrew Ng Machine Learning - Week 1: Introduction

此文是斯坦福大学,机器学习界 superstar - Andrew Ng 所开设的 Coursera 课程:Machine Learning 的课程笔记.力求简洁,仅代表本人观点,不足之处希望大家探讨. 课程网址:https://www.coursera.org/learn/machine-learning/home/welcome Week 1: Introduction Environment Setup Instructions 这一章介绍课程一般使用的工具.octave或者matlab即

斯坦福大学Andrew Ng - 机器学习笔记(1) -- 单变量&多变量线性回归

大概用了一个月,Andrew Ng老师的机器学习视频断断续续看完了,以下是个人学习笔记,入门级别,权当总结.笔记难免有遗漏和误解,欢迎讨论. 鸣谢:中国海洋大学黄海广博士提供课程视频和个人笔记,在此深表感谢!

斯坦福大学Andrew Ng - 机器学习笔记(2) -- 逻辑回归 & 正则化

大概用了一个月,Andrew Ng老师的机器学习视频断断续续看完了,以下是个人学习笔记,入门级别,权当总结.笔记难免有遗漏和误解,欢迎讨论. 鸣谢:中国海洋大学黄海广博士提供课程视频和个人笔记,在此深表感谢!