1.题目描述:点击打开链接
2.解题思路:本题利用概率dp解决。根据题意描述,我们可以定义d(i,j)表示前i道题做对j道的概率。那么根据全概率公式,可以得到如下递推式:
d(i,j)=d(i-1,j)*(1-p[i])+d(i-1,j-1)*p[i](0≤j≤i)
其中p[i]表示第i道题做对的概率。这样,得到所有的d值后,ans=sum{d(i,j)|k≤j≤n}
3.代码:
#define _CRT_SECURE_NO_WARNINGS #include<iostream> #include<algorithm> #include<string> #include<sstream> #include<set> #include<vector> #include<stack> #include<map> #include<queue> #include<deque> #include<cstdlib> #include<cstdio> #include<cstring> #include<cmath> #include<ctime> #include<functional> using namespace std; #define N 1000+10 double p[N]; double d[N][N]; int n, k; int main() { //freopen("t.txt", "r", stdin); int T; scanf("%d", &T); while (T--) { scanf("%d%d", &n, &k); memset(p, 0, sizeof(p)); memset(d, 0, sizeof(d)); for (int i = 1; i <= n; i++) scanf("%lf", &p[i]); d[0][0] = 1.0; for (int i = 1; i <= n; i++) for (int j = 0; j <= i; j++)//注意,j一定要从0开始算起 { d[i][j] = d[i - 1][j] * (1 - p[i]); if (j)d[i][j] += d[i - 1][j - 1] * p[i]; } double ans = 0.0; for (int j = k; j <= n; j++) ans += d[n][j]; printf("%.4lf\n", ans); } return 0; }
时间: 2024-10-21 03:38:45