Global Contrast based Salient Region Detection (Ming ming Cheng)

abstract:

Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient
object extraction algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These
saliency maps are further used to initialize a novel iterative version of GrabCut for high quality salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet
image dataset. Our experimental results demonstrate that our algorithm consistently outperforms existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently
extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves
a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.

(1)HC:基于直方图对比度的方法,每一个像素的显著性值是由它与图像中所有其他像素的颜色差异来确定的,得到全分辨率显著性图像;

(2)RC:基于局部对比度的方法,先将图像分割成小区域,采用的分割方法是基于图的分割,基本分割思想是将每一个像素点作为无向图的顶点,两个像素点之间的不相似度作为边的权重,要求连接相同区域内的两个顶点的边的最大权重要小于连接不同区域的变得最小权重,在迭代过程中进行顶点归纳与区域合并,每个区域的显著性值由它与其它所有区域的空间距离和区域像素数加权的颜色差异来确定;空间距离为两个区域重心的欧式距离,较远的区域分配较小的权值。

(3)加速细节:

1、将每个颜色通道由256个颜色值量化到12个颜色值后,对输入颜色图像计算颜色直方图,保留高频颜色,剩下的颜色舍弃,用直方图中 距离最近的颜色代替。

2、颜色空间平滑:减小量化误差,每个颜色的显著性值被替换为相似颜色显著性的加权平均;在RGB空间进行量化,用Lab空间度量距离。

接下来会进行代码解析。具体内容参考:点击打开链接

Global Contrast based Salient Region Detection (Ming ming Cheng)

时间: 2024-10-18 04:57:15

Global Contrast based Salient Region Detection (Ming ming Cheng)的相关文章

CVPR 2011 Global contrast based salient region detection

Two salient region detection methods are proposed in this paper: HC AND RC HC: Histogram based contrast 1. Primary method It is simply to calculate the saliency of each color in the input image, where each pixel's saliency is defined using its color

ACCV2004 Salient Region Detection 论文阅读

Salient Region Detection using Weighted Feature Maps based on the Human Visual Attention Model 主要是根据不同的feature maps的自身特点来计算这个map的权重. Itti等人提出了一个基于human visual attention 的模型,来检测一副图像里的显著区域,分为颜色对比.灰度.方向的特征来分别检测显著性,最后合成一幅显著性图.合成的方法有supervised learning, n

论文阅读:Frequency-tuned Salient Region Detection

Frequency-tuned Salient Region Detection 作者发现,大部分方法产生的saliency map都不适合image segmentation.因为它们产生的saliency map分辨率低,物体边界不清楚,不能uniformly highlight 显著物体.这是由于向下采样让图像的频谱范围变窄了.为了解决这个问题,作者提出了对算法的五个要求,提出了一个适合做image segmentation 的saliency detector.五个要求是:着重强调最大的

Frequency-tuned Salient Region Detection MATLAB代码出错修改方法

论文:Frequency-tuned Salient Region Detection.CVPR.2009 MATLAB代码出错: Error using makecform>parseWPInput (line 389)Expected input number 2, PROPERTYNAME, to match one of these strings: AdaptedWhitePoint The input, ''whitepoint'', did not match any of the

(不断更新)关于显著性检测的调研-Salient Object Detection: A Survey

<Salient Object Detection: A Survey>作者:Ali Borji.Ming-Ming Cheng.Huaizu Jiang and Jia Li 基本按照文章中文献出现的顺序. 一.L. Itti, C. Koch, and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis," IEEE TPAMI, 1998. 一个用于快速场景分析

论文阅读:DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection

因写作需要,再精读一下这篇文章,只说这篇文章提出的方法. 1.摘要部分: 本文提出了一种基于卷积神经网络的深层次显著性网络(deep hierarchical saliency network,DHSNet).该网络以下统一称作"DHSNet".工作流程大体是这样的: 1)首先,DHSNet通过自动学习各种全局结构上的显著性线索(这些线索包括全局对比度.对象性.紧凑性以及它们的优化组合),对输入的图片生成一个粗略的全局上的预测结果: 2)接着, 本文提出了一种分层递归卷积神经网络(hi

目标检测之显著区域检测---国外的一个图像显著区域检测代码及其效果图 saliency region detection

先看几张效果图吧 效果图: 可以直接测试的代码: 头文件: // Saliency.h: interface for the Saliency class.//////////////////////////////////////////////////////////////////////////===========================================================================// Copyright (c) 2009 R

《Benign and maligenant breast tumors classification based on region growing and CNN segmentation》翻译阅读与理解

注明:本人英语水平有限,翻译不当之处,请以英文原版为准,不喜勿喷,另,本文翻译只限于学术交流,不涉及任何版权问题,若有不当侵权或其他任何除学术交流之外的问题,请留言本人,本人立刻删除,谢谢!! <基于区域生长的良性和恶性乳腺肿瘤的分类> 摘要 良性肿瘤被认为是导致女性死亡的常见起因之一,对良性肿瘤的早期检测能够提高患者的生存率,因此创造一个能够检测乳腺的可疑组织的系统是非常重要的.本文提出两种自动检测良性和恶性肿瘤的方法,第一种方法中,使用自动的区域生长法进行图形分割,区域生长法的门限值是通过

论文阅读:EGNet: Edge Guidance Network for Salient Object Detection

论文地址:http://openaccess.thecvf.com/content_ICCV_2019/papers/Zhao_EGNet_Edge_Guidance_Network_for_Salient_Object_Detection_ICCV_2019_paper.pdf 当前方法的问题 全卷积网络解决了像素标记问题,出现了几种用于显着物体检测的端到端深度架构. 输出显着性图的基本单位从图像区域开始变成每个像素. 一方面,由于每个像素都有其显着性值,结果突出显示了细节. 但是,它忽略了对