UVA Matrix Chain Multiplication

题目如下:

Matrix Chain Multiplication

Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is

associative, the order in which multiplications are performed is arbitrary. However, the number of elementary

multiplications needed strongly depends on the evaluation order you choose.

For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix. There are two different strategies to compute

A*B*C, namely (A*B)*C and A*(B*C).

The first one takes 15000 elementary multiplications, but the second one only 3500.

Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation

strategy.

Input Specification

Input consists of two parts: a list of matrices and a list of expressions.

The first line of the input file contains one integer n ( 1=<n<=26 ), representing the number of matrices in the first

part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying

the number of rows and columns of the matrix.

The second part of the input file strictly adheres to the following syntax (given in EBNF):

SecondPart = Line { Line } <EOF>

Line       = Expression <CR>

Expression = Matrix | "(" Expression Expression ")"

Matrix     = "A" | "B" | "C" | ... | "X" | "Y" | "Z"

Output Specification

For each expression found in the second part of the input file, print one line containing the word "error" if evaluation

of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of

elementary multiplications needed to evaluate the expression in the way specified by the parentheses.

Sample Input

9

A 50 10

B 10 20

C 20 5

D 30 35

E 35 15

F 15 5

G 5 10

H 10 20

I 20 25

A

B

C

(AA)

(AB)

(AC)

(A(BC))

((AB)C)

(((((DE)F)G)H)I)

(D(E(F(G(HI)))))

((D(EF))((GH)I))

Sample Output

0

0

0

error

10000

error

3500

15000

40500

47500

15125

我用这道题练了练STL库中的map和pair,感觉熟悉了许多,一遍AC了。我是直接模拟的,遇到括号内有两个字母的情况,直接raplace成一个新矩阵(用小写表示),并给count加上乘法的数目,遇到左行不等于右列的情况,跳出循环,输出error。

AC的代码如下:

UVA Matrix Chain Multiplication

时间: 2025-01-15 15:05:22

UVA Matrix Chain Multiplication的相关文章

UVA 442 二十 Matrix Chain Multiplication

Matrix Chain Multiplication Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Status Practice UVA 442 Appoint description:  System Crawler  (2015-08-25) Description Suppose you have to evaluate an expression like A*B*C*D*E

stack UVA 442 Matrix Chain Multiplication

题目传送门 /* stack 容器的应用:矩阵的表达式求值 A 矩阵是a * b,B 矩阵是b * c,则A * B 是a * c */ #include <cstdio> #include <iostream> #include <algorithm> #include <stack> #include <cmath> #include <cstring> #include <string> using namespac

[2016-02-05][UVA][442][Matrix Chain Multiplication]

[2016-02-05][UVA][442][Matrix Chain Multiplication] UVA - 442 Matrix Chain Multiplication Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu Submit Status Description Suppose you have to evaluate an expression like A*B*C*D*E where

UVa 442 Matrix Chain Multiplication(矩阵链乘,模拟栈)

题意  计算给定矩阵链乘表达式需要计算的次数  当前一个矩阵的列数等于后一个矩阵的行数时  他们才可以相乘  不合法输出error 输入是严格合法的  即使只有两个相乘也会用括号括起来  而且括号里最多有两个 那么就很简单了 遇到字母直接入栈  遇到反括号计算后入栈  然后就得到结果了 #include<cstdio> #include<cctype> #include<cstring> using namespace std; const int N = 1000;

UVa442 Matrix Chain Multiplication(矩阵链乘)

UVa442 Matrix Chain Multiplication(矩阵链乘) 题目链接:Uva442 题目描述:输入n个矩阵的维度和一个矩阵链乘的表达式,输出乘法的次数,如果乘法无法进行,则输出error. 题目分析: 栈对表达式求值有着特殊的作用,本题表达式简单,可以用一个栈来完成,遇到字母时入栈,遇到右括号时出栈并且计算,之后算出的结果入栈. <<<<<<<<<<<<<<<<<<<&l

442 - Matrix Chain Multiplication

Matrix Chain Multiplication Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of

Matrix Chain Multiplication(表达式求值用栈操作)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1082 Matrix Chain Multiplication Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 1382    Accepted Submission(s): 905 Problem Description Matrix mul

ACM学习历程——UVA442 Matrix Chain Multiplication(栈)

Description Matrix Chain Multiplication  Matrix Chain Multiplication  Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are perfo

Matrix Chain Multiplication (UVa 442)

Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices.Since matrix multiplication is associative, the order in which multiplications are performed isarbitrary. However, the number of elementary multiplications nee