互联网应用在高并发

互联网应用在高并发情况下,瓶颈在 IO 上(网络 IO 和磁盘 IO 上),并不在 CPU 上,这时采用传统的多线程技术基本上无济于事。

减少数据库磁盘 IO 时间最有效的办法是使用缓存,还可以将数据库弄成 master/slave 的读写分离,分表分库等等。

减少网络 IO、静态资源磁盘 IO 有效的办法:响应使用 GZIP 压缩(Web 服务器都能支持)、设置静态资源(图片、JS 文件、CSS 文件、HTML 文件的过期时间),应用在多 IDC 进行部署、使用 DNS 分发至不同的节点,若要加速用户的访问速度,可以使用 CDN 等等。

时间: 2024-10-29 19:08:56

互联网应用在高并发的相关文章

适于互联网的SEDA高并发架构

适于互联网的SEDA高并发架构 相关文章: 并发计算模型BSP与SEDA SEDA: An Architecture for Highly Concurrent Server Applications

Java高并发的常见应对方案

Java高并发的常见应对方案 一.关于并发我们说的高并发是什么? 在互联网时代,高并发,通常是指,在某个时间点,有很多个访问同时到来. 高并发,通常关心的系统指标与业务指标? QPS:每秒钟查询量,广义的,通常指指每秒请求数 响应时间:从请求发出到收到响应花费的时间,例如:系统处理一个HTTP请求需要100ms,这个100ms就是系统的响应时间 带宽:计算带宽大小需关注两个指标,峰值流量和页面的平均大小 PV:综合浏览量(Page View),即页面浏览量或者点击量,通常关注在24小时内访问的页

高并发的常见应对方案

一.关于并发我们说的高并发是什么? 在互联网时代,高并发,通常是指,在某个时间点,有很多个访问同时到来. 高并发,通常关心的系统指标与业务指标? QPS:每秒钟查询量,广义的,通常指指每秒请求数 响应时间:从请求发出到收到响应花费的时间,例如:系统处理一个HTTP请求需要100ms,这个100ms就是系统的响应时间 带宽:计算带宽大小需关注两个指标,峰值流量和页面的平均大小 PV:综合浏览量(Page View),即页面浏览量或者点击量,通常关注在24小时内访问的页面数量,即"日PV"

高并发大访问量架构设计演进之路 归纳总结

第01:大型架构的演进之路第02(上):分布式缓存第02(下):分布式缓存第03:分布式消息队列第04:分布式数据存储第05:分布式服务框架第06:高性能系统架构第07:高可用系统架构第08:系统的安全架构第09:架构实战案例分析第10:如何成为技术专家 系统的垂直伸缩,水平伸缩系统的性能瓶颈:分部式缓存:分布式数据存储,分布式服务架构: 强烈的好奇心,工程技术,产生价值赚钱(科学研究不同)扎实的软件技术基础:操作系统,数据结构,设计模式,编程语言,出色的编程能力:优秀的代码深刻领悟主流技术产品

15套java互联网架构师、高并发、集群、负载均衡、高可用、数据库设计、缓存、性能优化、大型分布式 项目实战视频教程

* { font-family: "Microsoft YaHei" !important } h1 { color: #FF0 } 15套java架构师.集群.高可用.高可扩 展.高性能.高并发.性能优化.Spring boot.Redis.ActiveMQ.Nginx.Mycat.Netty.Jvm大型分布 式项目实战视频教程 视频课程包含: 高级Java架构师包含:Spring boot.Spring  cloud.Dubbo.Redis.ActiveMQ.Nginx.Mycat

java架构师负载均衡、高并发、nginx优化、tomcat集群、异步性能优化、Dubbo分布式、Redis持久化、ActiveMQ中间件、Netty互联网、spring大型分布式项目实战视频教程百度网盘

15套Java架构师详情 * { font-family: "Microsoft YaHei" !important } h1 { background-color: #006; color: #FF0 } 15套java架构师.集群.高可用.高可扩展.高性能.高并发.性能优化.Spring boot.Redis.ActiveMQ.Nginx.Mycat.Netty.Jvm大型分布式项目实战视频教程 视频课程包含: 高级Java架构师包含:Spring boot.Spring  clo

互联网高并发架构技术实践

一.什么是高并发 高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求. 高并发相关常用的一些指标有响应时间(Response Time),吞吐量(Throughput),每秒查询率QPS(Query Per Second),并发用户数等. 响应时间:系统对请求做出响应的时间.例如系统处理一个HTTP请求需要200ms,这个200ms就是系统的响应时间. 吞吐量:单位时间内处理的请求数量. QPS:每秒响应

每一个程序员都应该知道的高并发处理技巧、创业公司如何解决高并发问题、互联网高并发问题解决思路、caoz大神多年经验总结分享

本文来源于caoz梦呓公众号高并发专辑,以图形化.松耦合的方式,对互联网高并发问题做了详细解读与分析,"技术在短期内被高估,而在长期中又被低估",而不同的场景和人员成本又导致了巨头的方案可能并不适合创业公司,那么如何保证高并发问题不成为创业路上的拦路虎,是每一个全栈工程师.资深系统工程师.有理想的程序员必备的技能,希望本文助您寻找属于自己的"成金之路",发亮发光. 目录: 场景及解决方法解读 认识负载 数据跟踪 脑图.caoz大神公众号分享 参考资料 秉承知其然及其

互联网金融高并发方案

小微金融.场景金融等新兴银行金融业务亟需一种新型的弹性架构来应对高并发.大流量的业务冲击,同时,要满足应用快速版本迭代升级.敏捷运维管理等需求.本文分享了BoCloud博云如何利用互联网应用架构与Docker容器技术帮助银行业应对“互联网+”挑战,建设基于PaaS平台的敏捷IT架构. 移动互联网渠道创新是传统企业无法也不能躲避的业务变革,无论是接入或者自建互联网渠道都需要回答如下问题:现在的IT架构能否应对互联网渠道创新业务的爆炸性冲击?什么样的IT架构才能够解决这个问题并具备应对未来需求的良好