luogu P4238 多项式求逆 (模板题、FFT)

手动博客搬家: 本文发表于20181125 13:21:46, 原地址https://blog.csdn.net/suncongbo/article/details/84485718

题目链接: https://www.luogu.org/problemnew/show/P4238

题意: 给定\(n\)次多项式\(A(x)\), 求\(n\)次多项式\(B(x)\)满足\(B(x)A(x)\equiv 1(\mod x^n)\)

题解:

DFT,每个数对\(998244353\)求逆元。IDFT回来。

发现,错了。

为什么呢?

因为要对\(x^n\)取模。

例如,\(1-x\)在模\(x^2\)意义下的逆元是\(1+x\), 但是在实际上逆元是\(1+x+x^2+x^3+...\), 是无穷和式。

所以此路不通。

考虑求解多项式问题的常用方法——分治法。

设已求\(B_0(x)\)满足\(B_0(x)A(x)\equiv 1(\mod x^n)\), 现要求\(B(x)\)满足\(B(x)A(x)\equiv 1(\mod x^{2n})\)

显然有\(B(x)-B_0(x)\equiv 0(\mod x^n)\)

为了凑出\(x^{2n}\)两边平方得

\(B^2(x)-2B_0(x)B(x)+B_0^2(x)\equiv 0(\mod x^{2n})\)

如何求\(B\)呢?因为\(A(x)B(x)\equiv 0(\mod x^{2n})\), 我们将式子两边同乘\(A(x)\)

\(A(x)B(x)B(x)-2B_0(x)A(x)B(x)+A(x)B_0^2(x)\equiv 0(\mod x^{2n})\)

\(B(x)\equiv 2B_0(x)-A(x)B_0^2(x) (\mod x^{2n})\)

右边的式子FFT计算即可。

时间复杂度?

\(T(n)=T(\frac{n}{2})+O(n\log n)\)

\(T(n)=O(n\log n)\).

常数?首先隐藏在递归复杂度背后有一个\(2\)倍常数。

然后我们把两个多项式相乘需要\(3\)次FFT, 三个就要\(6\)次。

因此常数为\(12\)倍。

如何优化?

\(IDFT(DFT(IDFT(DFT(A)\times DFT(B_0)))\times DFT(B_0))\)

变成\(IDFT(DFT(A)\times DFT^2(B_0)\)

\(3\)次即可!

常数变为\(6\)倍。

UPD: 关于这里的常数问题: 因为我递归里DFT的范围是\(2n\),最终的复杂度是\(T(2n) = 6(2n)\log (2n)\), 因此我认为应为\(12\)倍常数。

空间?空间复杂度\(O(n)\), 但是要开\(4d\)的数组,其中\(d\)是\(>n\)的最小的\(2\)的幂。

代码

因为FFT数组清零等原因代码(对我来说)很难写。

贴一下我刚刚写的版本吧,还算是比较简单。

(话说怎么CSDN突然傲娇了啊。。缩进变成1格??)

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define llong long long
#define ldouble long double
#define uint unsigned int
#define ullong unsigned long long
#define udouble unsigned double
#define uldouble unsigned long double
#define modinc(x) {if(x>=P) x-=P;}
#define pii pair<int,int>
#define piii pair<pair<int,int>,int>
#define piiii pair<pair<int,int>,pair<int,int> >
#define pli pair<llong,int>
#define pll pair<llong,llong>
#define Memset(a,x) {memset(a,x,sizeof(a));}
using namespace std;

const int N = 1<<19;
const int P = 998244353;
const int LGN = 19;
const int G = 3;
llong a[N+3];
llong b[N+3];
llong tmp1[N+3],tmp2[N+3],tmp3[N+3],tmp4[N+3],tmp5[N+3],tmp6[N+3];
int id[N+2];
int n;

void initid(int _len)
{
    id[0] = 0;
    for(int i=1; i<(1<<_len); i++) id[i] = (id[i>>1]>>1)|((i&1)<<(_len-1));
}

llong quickpow(llong x,llong y)
{
    llong cur = x,ret = 1ll;
    for(int i=0; y; i++)
    {
        if(y&(1ll<<i))
        {
            y-=(1ll<<i); ret = ret*cur%P;
        }
        cur = cur*cur%P;
    }
    return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);}

void ntt(int dgr,int coe,llong poly[],llong ret[])
{
    int len = 0; for(int i=0; i<=LGN; i++) if((1<<i)==dgr) {len = i; break;}
    initid(len); for(int i=0; i<dgr; i++) ret[i] = 0ll;
    for(int i=0; i<dgr; i++) ret[i] = poly[i];
    for(int i=0; i<dgr; i++) if(i<id[i]) swap(ret[i],ret[id[i]]);
    for(int i=1; i<=(dgr>>1); i<<=1)
    {
        llong tmp = quickpow(G,(P-1)/(i<<1));
        if(coe==-1) tmp = mulinv(tmp);
        for(int j=0; j<dgr; j+=(i<<1))
        {
            llong expn = 1ll;
            for(int k=0; k<i; k++)
            {
                llong x = ret[j+k],y = (expn*ret[j+i+k])%P;
                ret[j+k] = x+y; modinc(ret[j+k]);
                ret[j+i+k] = x-y+P; modinc(ret[j+i+k]);
                expn = (expn*tmp)%P;
            }
        }
    }
}

void polyinv(int dgr,llong poly[],llong ret[])
{
    for(int i=0; i<dgr; i++) ret[i] = 0ll;
    ret[0] = mulinv(poly[0]);
    for(int i=1; i<=(dgr>>1); i<<=1)
    {
        for(int j=0; j<(i<<2); j++) tmp1[j] = j<i ? ret[j] : 0ll;
        for(int j=0; j<(i<<2); j++) tmp2[j] = j<(i<<1) ? poly[j] : 0ll;
        ntt((i<<2),1,tmp1,tmp3); ntt((i<<2),1,tmp2,tmp4);
        for(int j=0; j<(i<<2); j++) tmp5[j] = tmp3[j]*tmp3[j]%P*tmp4[j]%P;
        ntt((i<<2),-1,tmp5,tmp6); llong tmp = mulinv(i<<2);
        for(int j=0; j<(i<<2); j++) tmp6[j] = tmp6[j]*tmp%P;
        for(int j=0; j<(i<<1); j++) ret[j] = (tmp1[j]+tmp1[j]-tmp6[j]+P)%P;
    }
}

int main()
{
    scanf("%d",&n); int dgr = 1; while(dgr<=n) dgr<<=1;
    for(int i=0; i<n; i++) scanf("%lld",&a[i]);
    polyinv(dgr,a,b);
    for(int i=0; i<n; i++) printf("%lld ",b[i]);
    return 0;
}

原文地址:https://www.cnblogs.com/suncongbo/p/10311216.html

时间: 2024-07-31 12:41:11

luogu P4238 多项式求逆 (模板题、FFT)的相关文章

luogu P4725 多项式对数函数 (模板题、FFT、多项式求逆、求导和积分)

手动博客搬家: 本文发表于20181125 13:25:03, 原地址https://blog.csdn.net/suncongbo/article/details/84487306 题目链接: https://www.luogu.org/problemnew/show/P4725 题目大意: 给定一个\(n\)次多项式\(A(x)\), 求一个\(n\)次多项式\(B(x)\)满足\(B(x)\equiv \ln A(x) (\mod x^n)\) 题解: 神数学模板题-- 数学真奇妙! 前驱

NTT+多项式求逆+多项式开方(BZOJ3625)

定义多项式h(x)的每一项系数hi,为i在c[1]~c[n]中的出现次数. 定义多项式f(x)的每一项系数fi,为权值为i的方案数. 通过简单的分析我们可以发现:f(x)=2/(sqrt(1-4h(x))+1) 于是我们需要多项式开方和多项式求逆. 多项式求逆: 求B(x),使得A(x)*B(x)=1 (mod x^m) 考虑倍增. 假设我们已知A(x)*B(x)=1 (mod x^m),要求C(x),使得A(x)*C(x)=1 (mod x^(2m)) 简单分析可得C(x)=B(x)*(2-A

多项式求逆 学习总结

感觉蒟蒻现在学多项式求逆貌似有些晚了 不过真的很有意思了(然而省选的时候自己还在玩泥巴什么也不会 多项式求逆是基于倍增的 假设我们知道 h(x)f(x)=1(mod x^n) 移项得 (h(x)*f(x)-1)=0(mod x^n) 两边同时求平方得 h(x)^2*f(x)^2 - 2*h(x)*f(x) +1 = 0 (mod x^2n) 设g(x)*f(x)=1(mod x^2n) 两边同时乘以g(x)可以得 h(x)^2*f(x) -2*h(x) + g(x) =0 (mod x^2n)

CF438E The Child and Binary Tree(生成函数+多项式开根+多项式求逆)

传送门 可以……这很多项式开根模板……而且也完全不知道大佬们怎么把这题的式子推出来的…… 首先,这题需要多项式开根和多项式求逆.多项式求逆看这里->这里,这里讲一讲多项式开根 多项式开方:已知多项式$A$,求多项式$B$满足$A^2\equiv B\pmod{x^n}$(和多项式求逆一样这里需要取模,否则$A$可能会有无数项) 假设我们已经求出$A'^2\equiv B\pmod{x^n}$,考虑如何计算出$A^2\equiv B\pmod{x^{2n}}$ 首先肯定存在$A^2\equiv B

[Codeforces438E][bzoj3625] 小朋友和二叉树 [多项式求逆+多项式开根]

题面 传送门 思路 首先,我们把这个输入的点的生成函数搞出来: \(C=\sum_{i=0}^{lim}s_ix^i\) 其中\(lim\)为集合里面出现过的最大的数,\(s_i\)表示大小为\(i\)的数是否出现过 我们再设另外一个函数\(F\),定义\(F_k\)表示总权值为\(k\)的二叉树个数 那么,一个二叉树显然可以通过两个子树(可以权值为0,也就是空子树)和一个节点构成 那么有如下求\(F\)的式子 \(F_0=1\) \(F_k=\sum_{i=0}^k s_i \sum_{j=0

【bzoj3456】城市规划(多项式求逆+dp)

Description 求\(~n~\)个点组成的有标号无向连通图的个数.\(~1 \leq n \leq 13 \times 10 ^ 4~\). Solution 这道题的弱化版是poj1737, 其中\(n \leq 50\), 先来解决这个弱化版的题.考虑\(~dp~\),直接统计答案难以入手,于是考虑容斥.显然有,符合条件的方案数\(=\)所有方案数\(-\)不符合条件的方案数,而这个不符合条件的方案数就是图没有完全联通的情况.设\(~dp_i~\)表示\(~i~\)个点组成的合法方案

[Luogu5162]WD与积木(多项式求逆)

不要以为用上Stirling数就一定离正解更近,FFT都是从DP式本身出发的. 设f[i]为i个积木的所有方案的层数总和,g[i]为i个积木的方案数,则答案为$\frac{f[i]}{g[i]}$ 转移枚举第一层是哪些积木:$$f_n=g_n+\sum_{i=1}^{n}\binom{n}{i}f_{n-i},f_0=0$$$$g_n=\sum_{i=1}^{n}\binom{n}{i}g_{n-i},g_0=1$$ 转化成卷积形式:$$\frac{f_n}{n!}=\frac{g_n}{n!}

【BZOJ 3456】 3456: 城市规划 (NTT+多项式求逆)

3456: 城市规划 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 658  Solved: 364 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通. 为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一

Nescafe41 ProblemA 异化多肽 多项式求逆

题目大意:. 思路: 搞出C的生成函数F(x),那么: 长度为1的答案为F(x) 长度为2的答案为F2(x) - 故最终的答案为 F(x)+F2(x)+F3(x)+... =1?F+∞(x)1?F(x) =11?F(x) 然后就是多项式求逆了= = 跪picks大毒瘤 #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define M (263000&