Python机器学习及实践+从零开始通往Kaggle竞赛之路

内容简介

本书面向所有对机器学习与数据挖掘的实践及竞赛感兴趣的读者,从零开始,以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读者熟悉并且掌握当下最流行的机器学习、数据挖掘与自然语言处理工具,如Scikitlearn、NLTK、Pandas、gensim、XGBoost、Google Tensorflow等。 全书共分4章。第1章简介篇,介绍机器学习概念与Python编程知识;第2章基础篇,讲述如何使用Scikitlearn作为基础机器学习工具;第3章进阶篇,涉及怎样借助高级技术或者模型进一步提升既有机器学习系统的性能;第4章竞赛篇,以Kaggle平台为对象,帮助读者一步步使用本书介绍过的模型和技巧,完成三项具有代表性的竞赛任务。

所属网站分类: 资源下载 > python电子书


作者:丸子

链接:http://www.pythonheidong.com/blog/article/444/

来源:python黑洞网

原文地址:https://www.cnblogs.com/fuchen9527/p/10860153.html

时间: 2024-11-07 02:08:58

Python机器学习及实践+从零开始通往Kaggle竞赛之路的相关文章

《机器学习及实践--从零开始通往Kaggle竞赛之路》

<机器学习及实践--从零开始通往Kaggle竞赛之路> 在开始说之前一个很重要的Tip:电脑至少要求是64位的,这是我的痛. 断断续续花了个把月的时间把这本书过了一遍.这是一本非常适合基于python入门的机器学习入门的书籍,全书通俗易懂且有代码提供.书中源代码连接为Ipython环境.主页君使用的是pycharm,python2.7,具体安转过程书本写的很详细.码完书中代码,有一点点点小不符(或许可能是因为平台不一样),百度基本可以解决问题(有问题也可以留言探讨).贴一点代码,以示学习: 1

《Python机器学习及实践:从零开始通往Kaggle竞赛之路》

<Python 机器学习及实践–从零开始通往kaggle竞赛之路>很基础 主要介绍了Scikit-learn,顺带介绍了pandas.numpy.matplotlib.scipy. 本书代码基于python2.x.不过大部分可以通过修改print()来适应python3.5.x. 提供的代码默认使用 Jupyter Notebook,建议安装Anaconda3. 最好是到https://www.kaggle.com注册账号后,运行下第四章的代码,感受下. 监督学习: 2.1.1分类学习(Cla

Python机器学习及实践 课后小题

目录 第二章 2.3章末小结 @(Python机器学习及实践-----从零开始通往Kaggle竞赛之路) 第二章 2.3章末小结 1 机器学习模型按照使用的数据类型,可分为监督学习和无监督学习两大类. 监督学习主要包括分类和回归的模型. 分类:线性分类,支持向量机(SVM),朴素贝叶斯,k近邻,决策树,集成模型(随机森林(多个决策树)等). 回归:线性回归,支持向量机(SVM),k近邻,回归树,集成模型(随机森林(多个决策树)等). 无监督学习主要包括:数据聚类(k-means)和数据降维(主成

PYTHON机器学习及实践pdf

下载地址:网盘下载 内容简介  · · · · · · 本书面向所有对机器学习与数据挖掘的实践及竞赛感兴趣的读者,从零开始,以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读者熟悉并且掌握当下最流行的机器学习.数据挖掘与自然语言处理工具,如Scikitlearn.NLTK.Pandas.gensim.XGBoost.Google Tensorflow等. 全书共分4章.第1章简介篇,介绍机器学习概念与Python编程知识:第2章基础篇,讲述如何使用Scikit

Python机器学习及实践 知识总结

机器学习中的监督学习的任务重点在于,根据已有的经验知识对未知样本的目标/标记进行预测. 根据目标预测变量的类型不同,我们把监督学习的任务大体分为分类学习与回归预测两类. 监督学习 任务的基本架构流程:1首先准备训练数据 可以是文本 图像 音频等:2然后抽取所需要的特征,形成特征向量:3接着,把这些特征向量连同对应的标记/目标一并送入学习算法中,训练出一个预测模型:4然后,采用同样的特征方法作用于新的测试数据,得到用于测试的数据的特征向量:5最后,使用预测模型对这些待预测的特征向量进行预测并得到结

[python机器学习及实践(6)]Sklearn实现主成分分析(PCA)

1.PCA原理 主成分分析(Principal Component Analysis,PCA), 是一种统计方法.通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分. PCA算法: 2.PCA的实现 数据集: 64维的手写数字图像 代码: #coding=utf-8 import numpy as np import pandas as pd from sklearn.decomposition import PCA from matplotlib imp

Python机器学习及实战kaggle从零到竞赛pdf电子版下载

Python机器学习及实战kaggle从零到竞赛pdf电子版下载 本书面向对机器学习感兴趣的专业认识,帮助从零开始一步一步掌握机器学习的奥义,在阅读的过程中由浅入深,慢慢步入机器学习的殿堂,零基础也可学习哦! 链接:https://pan.baidu.com/s/1l7MBESegEWD4fm0fYyld5w 提取码:eu2m 目录 第1章 简介篇…1 1.1 机器学习综述…1 1.1.1 任务…3 1.1.2 经验…5 1.1.3 性能…5 1.2 Python编程库…8 1.2.1 为什么使

分享《Python机器学习实践指南》(高清中文版PDF+高清英文版PDF+源代码)

下载:https://pan.baidu.com/s/11dGldpITOoUUJmS9eD5ENw Python机器学习实践指南(高清中文版PDF+高清英文版PDF+源代码) 中文和英文两版对比学习, 带目录书签,可复制粘贴:讲解详细并配有源代码. 其中,高清中文版如图: 原文地址:http://blog.51cto.com/3215120/2301528

分享《Python机器学习实践指南》+PDF+源码+Alexanfer T.Combs+黄申

下载:https://pan.baidu.com/s/1nb-Q7MtQ2dfBbx2Dir-rQA 更多资料分享:http://blog.51cto.com/14087171 Python机器学习实践指南(高清中文版PDF+高清英文版PDF+源代码) 高清中文版PDF,268页,带目录书签,彩色配图,文字可复制粘贴: 高清英文版PDF,324页,带目录书签,彩色配图,文字可复制粘贴: 中文和英文两版对比学习: 讲解详细并配有源代码. 其中,高清中文版如图: 原文地址:http://blog.5