Scrapy框架中的CrawlSpider

小思考:如果想要通过爬虫程序去爬取”糗百“全站数据新闻数据的话,有几种实现方法?

方法一:基于Scrapy框架中的Spider的递归爬取进行实现(Request模块递归回调parse方法)。

方法二:基于CrawlSpider的自动爬取进行实现(更加简洁和高效)。

一.简介

  CrawlSpider其实是Spider的一个子类,除了继承到Spider的特性和功能外,还派生除了其自己独有的更加强大的特性和功能。其中最显著的功能就是”LinkExtractors链接提取器“。Spider是所有爬虫的基类,其设计原则只是为了爬取start_url列表中网页,而从爬取到的网页中提取出的url进行继续的爬取工作使用CrawlSpider更合适。

二.使用

  1.创建scrapy工程:scrapy startproject projectName

  2.创建爬虫文件:scrapy genspider -t crawl spiderName www.xxx.com

    --此指令对比以前的指令多了 "-t crawl",表示创建的爬虫文件是基于CrawlSpider这个类的,而不再是Spider这个基类。

  3.观察生成的爬虫文件

# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule

class ChoutidemoSpider(CrawlSpider):
    name = ‘choutiDemo‘
    #allowed_domains = [‘www.chouti.com‘]
    start_urls = [‘http://www.chouti.com/‘]

    rules = (
        Rule(LinkExtractor(allow=r‘Items/‘), callback=‘parse_item‘, follow=True),
    )

    def parse_item(self, response):
        i = {}
        #i[‘domain_id‘] = response.xpath(‘//input[@id="sid"]/@value‘).extract()
        #i[‘name‘] = response.xpath(‘//div[@id="name"]‘).extract()
        #i[‘description‘] = response.xpath(‘//div[@id="description"]‘).extract()
        return i

   -3行:导入CrawlSpider相关模块

  - 7行:表示该爬虫程序是基于CrawlSpider类的

  - 12,13,14行:表示为提取Link规则

  - 16行:解析方法

  CrawlSpider类和Spider类的最大不同是CrawlSpider多了一个rules属性,其作用是定义”提取动作“。在rules中可以包含一个或多个Rule对象,在Rule对象中包含了LinkExtractor对象。

三.LinkExtractor:顾名思义,链接提取器。

    LinkExtractor(

         allow=r‘Items/‘,# 满足括号中“正则表达式”的值会被提取,如果为空,则全部匹配。

         deny=xxx,  # 满足正则表达式的则不会被提取。

         restrict_xpaths=xxx, # 满足xpath表达式的值会被提取

         restrict_css=xxx, # 满足css表达式的值会被提取

         deny_domains=xxx, # 不会被提取的链接的domains。 

    )

    - 作用:提取response中符合规则的链接。

Rule : 规则解析器。

根据链接提取器中提取到的链接,根据指定规则提取解析器链接网页中的内容。

     Rule(LinkExtractor(allow=r‘Items/‘), callback=‘parse_item‘, follow=True)

    - 参数介绍:

      参数1:指定链接提取器

      参数2:指定规则解析器解析数据的规则(回调函数)

      参数3:是否将链接提取器继续作用到链接提取器提取出的链接网页中。当callback为None,参数3的默认值为true。

  rules=( ):指定不同规则解析器。一个Rule对象表示一种提取规则。

CrawlSpider整体爬取流程:

    a)爬虫文件首先根据起始url,获取该url的网页内容

    b)链接提取器会根据指定提取规则将步骤a中网页内容中的链接进行提取

    c)规则解析器会根据指定解析规则将链接提取器中提取到的链接中的网页内容根据指定的规则进行解析

    d)将解析数据封装到item中,然后提交给管道进行持久化存储

简单代码实战应用

爬取糗事百科糗图板块的所有页码数据

# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule

class CrawldemoSpider(CrawlSpider):
    name = ‘qiubai‘
    #allowed_domains = [‘www.qiushibaike.com‘]
    start_urls = [‘https://www.qiushibaike.com/pic/‘]

    #连接提取器:会去起始url响应回来的页面中提取指定的url
    link = LinkExtractor(allow=r‘/pic/page/\d+\?‘) #s=为随机数
    link1 = LinkExtractor(allow=r‘/pic/$‘)#爬取第一页
    #rules元组中存放的是不同的规则解析器(封装好了某种解析规则)
    rules = (
        #规则解析器:可以将连接提取器提取到的所有连接表示的页面进行指定规则(回调函数)的解析
        Rule(link, callback=‘parse_item‘, follow=True),
        Rule(link1, callback=‘parse_item‘, follow=True),
    )

    def parse_item(self, response):
        print(response)

爬虫文件:

# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from qiubaiBycrawl.items import QiubaibycrawlItem
import re
class QiubaitestSpider(CrawlSpider):
    name = ‘qiubaiTest‘
    #起始url
    start_urls = [‘http://www.qiushibaike.com/‘]

    #定义链接提取器,且指定其提取规则
    page_link = LinkExtractor(allow=r‘/8hr/page/\d+/‘)

    rules = (
        #定义规则解析器,且指定解析规则通过callback回调函数
        Rule(page_link, callback=‘parse_item‘, follow=True),
    )

    #自定义规则解析器的解析规则函数
    def parse_item(self, response):
        div_list = response.xpath(‘//div[@id="content-left"]/div‘)

        for div in div_list:
            #定义item
            item = QiubaibycrawlItem()
            #根据xpath表达式提取糗百中段子的作者
            item[‘author‘] = div.xpath(‘./div/a[2]/h2/text()‘).extract_first().strip(‘\n‘)
            #根据xpath表达式提取糗百中段子的内容
            item[‘content‘] = div.xpath(‘.//div[@class="content"]/span/text()‘).extract_first().strip(‘\n‘)

            yield item #将item提交至管道

item文件:

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/items.html

import scrapy

class QiubaibycrawlItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    author = scrapy.Field() #作者
    content = scrapy.Field() #内容

管道文件:

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don‘t forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html

class QiubaibycrawlPipeline(object):

    def __init__(self):
        self.fp = None

    def open_spider(self,spider):
        print(‘开始爬虫‘)
        self.fp = open(‘./data.txt‘,‘w‘)

    def process_item(self, item, spider):
        #将爬虫文件提交的item写入文件进行持久化存储
        self.fp.write(item[‘author‘]+‘:‘+item[‘content‘]+‘\n‘)
        return item

    def close_spider(self,spider):
        print(‘结束爬虫‘)
        self.fp.close()

原文地址:https://www.cnblogs.com/zycorn/p/10282809.html

时间: 2024-11-08 08:38:30

Scrapy框架中的CrawlSpider的相关文章

18、python网路爬虫之Scrapy框架中的CrawlSpider详解

CrawlSpider的引入: 提问:如果想要通过爬虫程序去爬取"糗百"全站数据新闻数据的话,有几种实现方法? 方法一:基于Scrapy框架中的Spider的递归爬取进行实现(Request模块递归回调parse方法). 方法二:基于CrawlSpider的自动爬取进行实现(更加简洁和高效) CrawlSpider的简介: CrawlSpider其实是Spider的一个子类,除了继承到Spider的特性和功能外,还派生除了其自己独有的更加强大的特性和功能.其中最显著的功能就是"

scrapy专题(一):scrapy框架中各组件的工作流程

Scrapy 使用了 Twisted 异步非阻塞网络库来处理网络通讯,整体架构大致如下(绿线是数据流向): Scrapy主要包括了以下组件: 引擎(Scrapy)用来处理整个系统的数据流处理, 触发事务(框架核心) 调度器(Scheduler)用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址 下载器(Downloader)用于下载网页内容, 并将网页内容

Python爬虫从入门到放弃(十七)之 Scrapy框架中Download Middleware用法

这篇文章中写了常用的下载中间件的用法和例子.Downloader Middleware处理的过程主要在调度器发送requests请求的时候以及网页将response结果返回给spiders的时候,所以从这里我们可以知道下载中间件是介于Scrapy的request/response处理的钩子,用于修改Scrapy request和response. 编写自己的下载器中间件 编写下载器中间件,需要定义以下一个或者多个方法的python类 为了演示这里的中间件的使用方法,这里创建一个项目作为学习,这里

Python爬虫从入门到放弃(十四)之 Scrapy框架中选择器的用法

Scrapy提取数据有自己的一套机制,被称作选择器(selectors),通过特定的Xpath或者CSS表达式来选择HTML文件的某个部分Xpath是专门在XML文件中选择节点的语言,也可以用在HTML上.CSS是一门将HTML文档样式化语言,选择器由它定义,并与特定的HTML元素的样式相关联. XPath选择器 常用的路径表达式,这里列举了一些常用的,XPath的功能非常强大,内含超过100个的内建函数.下面为常用的方法 nodeName 选取此节点的所有节点 / 从根节点选取 // 从匹配选

将selenium集成到scrapy框架中

一 首先想到的是将selenium 写在下载中间件的process_request中.如以下代码. middleware.py from selenium import webdriver from scrapy.http import HtmlResponse class TestMiddleware(object): def __init__(self): self.driver = webdriver.Chrome() super().__init__() def process_requ

Scrapy框架中的Pipeline组件

简介 在下图中可以看到items.py与pipeline.py,其中items是用来定义抓取内容的实体:pipeline则是用来处理抓取的item的管道 Item管道的主要责任是负责处理有蜘蛛从网页中抽取的Item,他的主要任务是清晰.验证和存储数据.当页面被蜘蛛解析后,将被发送到Item管道,并经过几个特定的次序处理数据.每个Item管道的组件都是有一个简单的方法组成的Python类.获取了Item并执行方法,同时还需要确定是否需要在Item管道中继续执行下一步或是直接丢弃掉不处理.简而言之,

Python爬虫从入门到放弃 之 Scrapy框架中Download Middleware用法

这篇文章中写了常用的下载中间件的用法和例子.Downloader Middleware处理的过程主要在调度器发送requests请求的时候以及网页将response结果返回给spiders的时候,所以从这里我们可以知道下载中间件是介于Scrapy的request/response处理的钩子,用于修改Scrapy request和response. 编写自己的下载器中间件 编写下载器中间件,需要定义以下一个或者多个方法的python类 为了演示这里的中间件的使用方法,这里创建一个项目作为学习,这里

python爬虫之Scrapy框架中的Item Pipeline用法

当Item在Spider中被收集之后, 就会被传递到Item Pipeline中进行处理. 每个item pipeline组件是实现了简单的方法的python类, 负责接收到item并通过它执行一些行为, 同时也决定此item是否继续通过pipeline, 或者被丢弃而不再进行处理. item pipeline的主要作用 : 1. 清理html数据 2. 验证爬取的数据 3. 去重并丢弃 4. 将爬取的结果保存到数据库中或文件中 编写自己的item pipeline : process_item

Python爬虫从入门到放弃(十六)之 Scrapy框架中Item Pipeline用法

原文地址https://www.cnblogs.com/zhaof/p/7196197.html 当Item 在Spider中被收集之后,就会被传递到Item Pipeline中进行处理 每个item pipeline组件是实现了简单的方法的python类,负责接收到item并通过它执行一些行为,同时也决定此Item是否继续通过pipeline,或者被丢弃而不再进行处理 item pipeline的主要作用: 清理html数据 验证爬取的数据 去重并丢弃 讲爬取的结果保存到数据库中或文件中 编写