PAT甲级——1104 Sum of Number Segments (数学规律、自动转型)

本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90486252

1104 Sum of Number Segments (20 分)

Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence { 0.1, 0.2, 0.3, 0.4 }, we have 10 segments: (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) and (0.4).

Now given a sequence, you are supposed to find the sum of all the numbers in all the segments. For the previous example, the sum of all the 10 segments is 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N, the size of the sequence which is no more than 1. The next line contains N positive numbers in the sequence, each no more than 1.0, separated by a space.

Output Specification:

For each test case, print in one line the sum of all the numbers in all the segments, accurate up to 2 decimal places.

Sample Input:

4
0.1 0.2 0.3 0.4

Sample Output:

5.00

题目大意:给出N个数,按照要求找出所有的集合,将这些集合的数相加,输出结果。

思路:找出数学规律,总结公式,需要注意的是,系数k可能会超出int的范围,需要用long long int。(考察了自动转型的知识,题目是Google的人出的)

 1 #include <iostream>
 2 #include <vector>
 3 using namespace std;
 4
 5 int main()
 6 {
 7     int N;
 8     long long int k;
 9     scanf("%d", &N);
10     vector <double> v(N);
11     for (int i = 0; i < N; i++)
12         scanf("%lf", &v[i]);
13     double sum = 0;
14     for (int i = 0; i < N; i++){
15         k = (i + 1);
16         k *= N-i;
17         sum += k * v[i];
18     }
19     printf("%.2lf\n", sum);
20     return 0;
21 }

原文地址:https://www.cnblogs.com/yinhao-ing/p/10914400.html

时间: 2024-10-14 02:07:13

PAT甲级——1104 Sum of Number Segments (数学规律、自动转型)的相关文章

PAT 甲级 1104 Sum of Number Segments (20分)(有坑,int *int 可能会溢出)

1104 Sum of Number Segments (20分)   Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence { 0.1, 0.2, 0.3, 0.4 }, we have 10 segments: (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0

1104. Sum of Number Segments (20)【数学题】——PAT (Advanced Level) Practise

题目信息 1104. Sum of Number Segments (20) 时间限制200 ms 内存限制65536 kB 代码长度限制16000 B Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence {0.1, 0.2, 0.3, 0.4}, we have 10 segments: (0.1)

1104 Sum of Number Segments(二刷)

英文题目:1104 Sum of Number Segments 中文题目:1049 数列的片段和 1 #include<iostream> 2 using namespace std; 3 4 int main() { 5 int n; 6 double t,sum = 0; 7 cin>>n; 8 for(int i = 0 ; i < n; ++i) { 9 cin>>t; 10 sum += (i+1)*t*(n-i); 11 } 12 printf(&q

PAT (Advanced Level) 1104. Sum of Number Segments (20)

简单题. #include<cstdio> #include<cstring> #include<cmath> #include<vector> #include<map> #include<queue> #include<stack> #include<algorithm> using namespace std; int n; double a[100000+10]; double b[100000+10]

1104 Sum of Number Segments (20)

Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence {0.1, 0.2, 0.3, 0.4}, we have 10 segments: (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0

1104 Sum of Number Segments

题意: 给出n个不大于1.0的小数序列,如{ 0.1, 0.2, 0.3, 0.4 },则共有10个分片(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) and (0.4).现要求计算每个分片之和,即0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0. 思路:数学题

HDU 1005 Number Sequence (数学规律)

Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 104190    Accepted Submission(s): 25232 Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A

PAT 甲级 1019 General Palindromic Number

https://pintia.cn/problem-sets/994805342720868352/problems/994805487143337984 A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit num

PAT甲级——A1019 General Palindromic Number

A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers. Although palindromic numbers are most often cons