多数投票算法(Boyer-Moore Algorithm)详解

多数投票算法(Boyer-Moore Algorithm)详解
写在前面:我在刷LeetCode 169 时碰到了这个问题,并且在评论区找到了这个方法,不过我发现CSDN上对其进行解读的博客大多停留在知其然而不知其所以然的层面,所以准备在此做一个较为详细的解读,重点在于介绍其原理。

问题描述
给定一个无序数组,有n个元素,找出其中的一个多数元素,多数元素出现的次数大于? n/2 ?,注意数组中也可能不存在多数元素。

一般解法
先对数组排序,然后取中间位置的元素,再对数据扫描一趟来判断此元素是否为多数元素。时间复杂度O(nlog(n)),空间复杂度O(1)。
使用一个hash表,对数组进行一趟扫描统计每个元素出现的次数,即可得到多数元素。时间复杂度O(n),空间复杂度O(n)。
Boyer-Moore 算法
该算法时间复杂度为O(n),空间复杂度为O(1),只需要对原数组进行两趟扫描,并且简单易实现。第一趟扫描我们得到一个候选节点candidate,第二趟扫描我们判断candidate出现的次数是否大于? n/2 ?。

第一趟扫描中,我们需要记录2个值:

candidate,初值可以为任何数
count,初值为0
之后,对于数组中每一个元素,首先判断count是否为0,若为0,则把candidate设置为当前元素。之后判断candidate是否与当前元素相等,若相等则count+=1,否则count-=1。

python代码:

candidate = 0
count = 0
for value in input:
if count == 0:
candidate = value
if candidate == value:
count += 1
else:
count -= 1
1
2
3
4
5
6
7
8
9
在第一趟扫描结束后,如果数组中存在多数元素,那么candidate即为其值,如果原数组不存在多数元素,则candidate的值没有意义。所以需要第二趟扫描来统计candidate出现的次数来判断其是否为多数元素。

代码虽简单,但我们不光要知其然,更要知其所以然,探究代码背后的原理往往可以收获更多。

原理解析
为了解析算法的原理,我们只要考虑存在多数元素的情况即可,因为第二趟扫描可以检测出不存在多数元素的情况。

举个例子,我们的输入数组为[1,1,0,0,0,1,0],那么0就是多数元素。
首先,candidate被设置为第一个元素1,count也变成1,由于1不是多数元素,所以当扫描到数组某个位置时,count一定会减为0。在我们的例子中,当扫描到第四个位置时,count变成0.

count 值变化过程:
[1,2,1,0……

当count变成0时,对于每一个出现的1,我们都用一个0与其进行抵消,所以我们消耗掉了与其一样多的0,而0是多数元素,这意味着当扫描到第四个位置时,我们已经最大程度的消耗掉了多数元素。然而,对于数组从第五个位置开始的剩余部分,0依然是其中的多数元素(注意,多数元素出现次数大于? n/2 ?,而我们扫描过的部分中多数元素只占一般,那剩余部分中多数元素必然还是那个数字)。如果之前用于抵消的元素中存在非多数元素,那么数组剩余部分包含的多数元素就更多了。

类似的,假设第一个数字就是多数元素,那么当count减为0时,我们消耗掉了与多数元素一样多的非多数元素,那么同样道理,数组剩余部分中的多数元素数值不变。

这两种情况证明了关键的一点:数组中从candidate被赋值到count减到0的那一段可以被去除,余下部分的多数元素依然是原数组的多数元素。我们可以不断重复这个过程,直到扫描到数组尾部,那么count必然会大于0,而且这个count对应的candinate就是原数组的多数元素。

分布式Boyer-Moore
Boyer-Moore还有一个优点,那就是可以使用并行算法实现。相关算法可见Finding the Majority Element in Parallel
其基本思想为对原数组采用分治的方法,把数组划分成很多段(每段大小可以不相同),在每段中计算出candidate-count二元组,然后得到最终结果。

举个例子,原数组为[1,1,0,1,1,0,1,0,0]
划分1:
[1,1,0,1,1] –> (candidate,count)=(1,3)
划分2:
[0,1,0,0] –> (candidate,count)=(0,2)
根据(1,3)和(0,2)可得,原数组的多数元素为1.

正因为这个特性,考虑若要从一个非常大的数组中寻找多数元素,数据量可能多大数百G,那么我们甚至可以用MapReduce的方式来解决这个问题。

参考
https://gregable.com/2013/10/majority-vote-algorithm-find-majority.html
The Boyer-Moore Majority Vote Algorithm
Finding the Majority Element in Parallel

48. 主元素 III

中文English

给定一个整型数组,找到主元素,它在数组中的出现次数严格大于数组元素个数的1/k。

样例

例1:

输入: [3,1,2,3,2,3,3,4,4,4] and k=3,
输出: 3.
class Solution:
    """
    @param nums: A list of integers
    @param k: An integer
    @return: The majority number
    """
    def majorityNumber(self, nums, k):
        # write your code here
        if not nums:
            return None
        if k <= 0:
            return None
        ballot = {}
        for num in nums:
            if num in ballot: # in, +1
                ballot[num] += 1
            else: # not in
                if len(ballot)<k-1: # not full, add
                    ballot[num] = 1
                else: # full, all-1, del all 0
                    key_to_delete = []
                    for key in ballot:
                        ballot[key]-=1
                        if ballot[key] == 0:
                            key_to_delete.append(key)
                    for key_d in key_to_delete:
                        del ballot[key_d]
        majority = None
        for key in ballot:
            if nums.count(key)>len(nums)//k:
                majority = key
                break
        return majority

原文地址:https://www.cnblogs.com/andy-0212/p/10420876.html

时间: 2024-10-05 06:15:58

多数投票算法(Boyer-Moore Algorithm)详解的相关文章

关联规则算法(The Apriori algorithm)详解

一.前言 在学习The Apriori algorithm算法时,参考了多篇博客和一篇论文,尽管这些都是很优秀的文章,但是并没有一篇文章详解了算法的整个流程,故整理多篇文章,并加入自己的一些注解,有了下面的文章.大部分应该是copy各篇博客和翻译了论文的重要知识. 关联规则的目的在于在一个数据集中找出项之间的关系,也称之为购物蓝分析 (market basket analysis).例如,购买鞋的顾客,有10%的可能也会买袜子,60%的买面包的顾客,也会买牛奶.这其中最有名的例子就是"尿布和啤酒

Dijkstra算法(三)之 Java详解

前面分别通过C和C++实现了迪杰斯特拉算法,本文介绍迪杰斯特拉算法的Java实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法图解 3. 迪杰斯特拉算法的代码说明 4. 迪杰斯特拉算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 迪杰斯特拉算法介绍 迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径. 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想

Kruskal算法(三)之 Java详解

前面分别通过C和C++实现了克鲁斯卡尔,本文介绍克鲁斯卡尔的Java实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的代码说明 6. 克鲁斯卡尔算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的

Kruskal算法(二)之 C++详解

本章是克鲁斯卡尔算法的C++实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的代码说明 6. 克鲁斯卡尔算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树. 例如,对于如上图G4所示的

算法学习笔记 KMP算法之 next 数组详解

最近回顾了下字符串匹配 KMP 算法,相对于朴素匹配算法,KMP算法核心改进就在于:待匹配串指针 i 不发生回溯,模式串指针 j 跳转到 next[j],即变为了 j = next[j]. 由此时间复杂度由朴素匹配的 O(m*n) 降到了 O(m+n), 其中模式串长度 m, 待匹配文本串长 n. 其中,比较难理解的地方就是 next 数组的求法.next 数组的含义:代表当前字符之前的字符串中,有多大长度的相同前缀后缀,也可看作有限状态自动机的状态,而且从自动机的角度反而更容易推导一些. "前

海量数据处理算法总结【超详解】

1. Bloom Filter [Bloom Filter]Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.它是一个判断元素是否存在集合的快速的概率算法.Bloom Filter有可能会出现错误判断,但不会漏掉判断.也就是Bloom Filter判断元素不再集合,那肯定不在.如果判断元素存在集合中,有一定的概率判断错误.因此,Bloom Filter不适合那些“零错误”的应用场合. 而在能容忍低错误率的应用场合

SSD(single shot multibox detector)算法及Caffe代码详解[转]

这篇博客主要介绍SSD算法,该算法是最近一年比较优秀的object detection算法,主要特点在于采用了特征融合. 论文:SSD single shot multibox detector论文链接:https://arxiv.org/abs/1512.02325 算法概述: 本文提出的SSD算法是一种直接预测bounding box的坐标和类别的object detection算法,没有生成proposal的过程.针对不同大小的物体检测,传统的做法是将图像转换成不同的大小,然后分别处理,最

算法笔记--sg函数详解及其模板

sg函数大神详解:http://blog.csdn.net/luomingjun12315/article/details/45555495 模板: int f[N],SG[N]; bool S[M]; void getSG(int n) { memset(SG,0,sizeof(SG)); for(int i=1;i<=n;i++) { memset(S,false,sizeof(S)); for(int j=1;f[j]<=i&&j<M;j++) { S[SG[i-f

Partition算法以及其应用详解(Golang实现)

最近像在看闲书一样在看一本<啊哈!算法> 当时在amazon上面闲逛挑书,看到巨多人推荐这本算法书,说深入浅出简单易懂便买来阅读.实际上作者描述算法的能力的确令人佩服.就当复习常用算法吧. 后面会依次纪录一下我觉得有意思的常用算法使用,这次就是快排. 快速排序简介: 快排的中心思想还是二分法,通过partition算法,先将需要排序的数组分为两个部分,再用递归的思想反复这个过程.最后将排序好的最小单元再依次组装起来获得最后的数据.快排的平均时间复杂度是O(nlogN),最糟糕的情况是O(N平方