[转]状态压缩dp(状压dp)

状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴。

为了更好的理解状压dp,首先介绍位运算相关的知识。

1.’&’符号,x&y,会将两个十进制数在二进制下进行与运算,然后返回其十进制下的值。例如3(11)&2(10)=2(10)。

2.’|’符号,x|y,会将两个十进制数在二进制下进行或运算,然后返回其十进制下的值。例如3(11)|2(10)=3(11)。

3.’^’符号,x^y,会将两个十进制数在二进制下进行异或运算,然后返回其十进制下的值。例如3(11)^2(10)=1(01)。

4.’<<’符号,左移操作,x<<2,将x在二进制下的每一位向左移动两位,最右边用0填充,x<<2相当于让x乘以4。相应的,’>>’是右移操作,x>>1相当于给x/2,去掉x二进制下的最有一位。

这四种运算在状压dp中有着广泛的应用,常见的应用如下:

1.判断一个数字x二进制下第i位是不是等于1。

方法:if ( ( ( 1 << ( i - 1 ) ) & x ) > 0)

将1左移i-1位,相当于制造了一个只有第i位上是1,其他位上都是0的二进制数。然后与x做与运算,如果结果>0,说明x第i位上是1,反之则是0。

2.将一个数字x二进制下第i位更改成1。

方法:x = x | ( 1<<(i-1) )

证明方法与1类似,此处不再重复证明。

3.把一个数字二进制下最靠右的第一个1去掉。

方法:x=x&(x-1)

感兴趣的读者可以自行证明。

位运算在状压dp中用途十分广泛,请看下面的例题。

【例1】有一个N*M(N<=5,M<=1000)的棋盘,现在有1*2及2*1的小木块无数个,要盖满整个棋盘,有多少种方式?答案只需要mod1,000,000,007即可。

例如:对于一个2*2的棋盘,有两种方法,一种是使用2个1*2的,一种是使用2个2*1的。

【算法分析】

在这道题目中,N和M的范围本应该是一样的,但实际上,N和M的范围却差别甚远,对于这种题目,首先应该想到的就是,正确算法与这两个范围有关!N的范围特别小,因此可以考虑使用状态压缩动态规划的思想,请看下面的图:

假设第一列已经填满,则第二列的摆设方式,只与第一列对第二列的影响有关。同理,第三列的摆设方式也只与第二列对它的影响有关。那么,使用一个长度为N的二进制数state来表示这个影响,例如:4(00100)就表示了图上第二列的状态。

因此,本题的状态可以这样表示:

dp[i][state]表示该填充第i列,第i-1列对它的影响是state的时候的方法数。i<=M,0<=state<2N

对于每一列,情况数也有很多,但由于N很小,所以可以采取搜索的办法去处理。对于每一列,搜索所有可能的放木块的情况,并记录它对下一列的影响,之后更新状态。状态转移方程如下:

dp[i][state]=∑dp[i-1][pre]每一个pre可以通过填放成为state

对于每一列的深度优先搜索,写法如下:

//第i列,枚举到了第j行,当前状态是state,对下一列的影响是nex
void dfs(int i,int j,int state,int nex)
{
if (j==N)
{
dp[i+1][nex]+=dp[i][state];
dp[i+1][nex]%=mod;
return;
}
//如果这个位置已经被上一列所占用,直接跳过
if (((1<<j)&state)>0)
dfs(i,j+1,state,nex);
//如果这个位置是空的,尝试放一个1*2的
if (((1<<j)&state)==0)
dfs(i,j+1,state,nex|(1<<j));
//如果这个位置以及下一个位置都是空的,尝试放一个2*1的
if (j+1<N && ((1<<j)&state)==0 && ((1<<(j+1))&state)==0)
dfs(i,j+2,state,nex);
return;
}

状态转移的方式如下:

for (int i=1;i<=M;i++)
{
for (int j=0;j<(1<<N);j++)
if (dp[i][j])
{
dfs(i,0,j,0);
}
}

最终,答案就是dp[M+1][0]。

【代码实现】

/*
ID:aqx
PROG:铺地砖
LANG:c++
*/
//第i列,枚举到了第j行,当前状态是state,对下一列的影响是nex
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>

using namespace std;

int N, M;
long long dp[1005][34];

void dfs(int i,int j,int state,int nex)
{
if (j==N)
{
dp[i+1][nex]+=dp[i][state];
return;
}
//如果这个位置已经被上一列所占用,直接跳过
if (((1<<j)&state)>0)
dfs(i,j+1,state,nex);
//如果这个位置是空的,尝试放一个1*2的
if (((1<<j)&state)==0)
dfs(i,j+1,state,nex|(1<<j));
//如果这个位置以及下一个位置都是空的,尝试放一个2*1的
if (j+1<N && ((1<<j)&state)==0 && ((1<<(j+1))&state)==0)
dfs(i,j+2,state,nex);
return;
}

int main()
{
while (cin>>N>>M)
{
memset(dp,0,sizeof(dp));
if (N==0 && M==0) break;
dp[1][0]=1;
for (int i=1;i<=M;i++)
{
for (int j=0;j<(1<<N);j++)
if (dp[i][j])
{
dfs(i,0,j,0);
}
}
cout<<dp[M+1][0]<<endl;
}
}

【例2】最小总代价(Vijos-1456)

题目描述:

n个人在做传递物品的游戏,编号为1-n。

游戏规则是这样的:开始时物品可以在任意一人手上,他可把物品传递给其他人中的任意一位;下一个人可以传递给未接过物品的任意一人。

即物品只能经过同一个人一次,而且每次传递过程都有一个代价;不同的人传给不同的人的代价值之间没有联系;

求当物品经过所有n个人后,整个过程的总代价是多少。

输入格式:

第一行为n,表示共有n个人(16>=n>=2);

以下为n*n的矩阵,第i+1行、第j列表示物品从编号为i的人传递到编号为j的人所花费的代价,特别的有第i+1行、第i列为-1(因为物品不能自己传给自己),其他数据均为正整数(<=10000)。

(对于50%的数据,n<=11)。

输出格式:

一个数,为最小的代价总和。

输入样例:

2

-1 9794

2724 –1

输出样例:

2724

【算法分析】

看到2<=n<=16,应想到此题和状态压缩dp有关。每个人只能够被传递一次,因此使用一个n位二进制数state来表示每个人是否已经被访问过了。但这还不够,因为从这样的状态中,并不能清楚地知道现在物品在谁 的手中,因此,需要在此基础上再增加一个状态now,表示物品在谁的手上。

dp[state][now]表示每个人是否被传递的状态是state,物品在now的手上的时候,最小的总代价。

初始状态为:dp[1<<i][i]=0;表示一开始物品在i手中。

所求状态为:min(dp[(1<<n)-1][j]); 0<=j<n

状态转移方程是:

dp[state][now]=min(dp[pre][t]+dist[now][t]);

pre表示的是能够到达state这个状态的一个状态,t能够传递物品给now且只有二进制下第t位与state不同。

状态的大小是O((2n)*n),转移复杂度是O(n)。总的时间复杂度是O((2n)*n*n)。

【代码实现】

/*
ID:shijieyywd
PROG:Vijos-1456
LANG:c++
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>

#define MAXN 20
#define INF 0x3f3f3f3f

using namespace std;

int n;
int edges[MAXN][MAXN];
int dp[65546][MAXN];

int min(int a, int b)
{
if (a == -1) return b;
if (b == -1) return a;
return a < b ? a : b;
}

int main() {
freopen("p1456.in", "r", stdin);
scanf("%d", &n);
int t;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
scanf("%d", &edges[i][j]);
}
}
memset(dp, -1, sizeof(dp));
for (int i = 0; i < n; i++)
{
dp[1 << i][i] = 0;
}
int ans = -1;
for (int i = 0; i < 1 << n; i++)
{
for (int j = 0; j < n; j++)
{
if (dp[i][j] != -1)
{
for (int k = 0; k < n; k++)
{
if (!(i & (1 << k)))
{
dp[i | (1 << k)][k] = min(dp[i | (1 << k)][k], dp[i][j] + edges[j][k]);
if ((i | (1 << k)) == (1 << n) - 1) ans = min(ans, dp[i | (1 << k)][k]);
}
}
}
}
}
if (ans != -1)
printf("%d\n", ans);
else printf("0\n");

return 0;
}

【例3】胜利大逃亡(续)(Hdoj-1429)

题目描述:

Ignatius再次被魔王抓走了(搞不懂他咋这么讨魔王喜欢)……

这次魔王汲取了上次的教训,把Ignatius关在一个n*m的地牢里,并在地牢的某些地方安装了带锁的门,钥匙藏在地牢另外的某些地方。刚开始Ignatius被关在(sx,sy)的位置,离开地牢的门在(ex,ey)的位置。Ignatius每分钟只能从一个坐标走到相邻四个坐标中的其中一个。魔王每t分钟回地牢视察一次,若发现Ignatius不在原位置便把他拎回去。经过若干次的尝试,Ignatius已画出整个地牢的地图。现在请你帮他计算能否再次成功逃亡。只要在魔王下次视察之前走到出口就算离开地牢,如果魔王回来的时候刚好走到出口或还未到出口都算逃亡失败。

输入格式:

每组测试数据的第一行有三个整数n,m,t(2<=n,m<=20,t>0)。接下来的n行m列为地牢的地图,其中包括:

. 代表路

* 代表墙

@ 代表Ignatius的起始位置

^ 代表地牢的出口

A-J 代表带锁的门,对应的钥匙分别为a-j

a-j 代表钥匙,对应的门分别为A-J

每组测试数据之间有一个空行。

输出格式:

针对每组测试数据,如果可以成功逃亡,请输出需要多少分钟才能离开,如果不能则输出-1。

输入样例:

4 5 17

@A.B.

a*.*.

*..*^

c..b*

输出样例:

16

【算法分析】

初看此题感觉十分像是宽度优先搜索(BFS),但搜索的过程中如何表示钥匙的拥有情况,却是个问题。借鉴状态压缩的思想,使用一个10位的二进制数state来表示此刻对10把钥匙的拥有情况,那么,dp[x][y][state]表示到达(x,y),钥匙拥有状况为state的最短路径。另外,需要注意到一旦拥有了某一把钥匙,那个有门的位置就如履平地了。

代码的实现方式可以采用Spfa求最短路的方式。值得一提的是,Spfa算法本来就是一种求解最短路径问题的动态规划算法,本文假设读者已经非常熟悉Spfa等基础算法,在此处不再赘述。

状态压缩dp可以出现在各种算法中,本题就是典型的搜索算法和状态压缩dp算法结合的题目。另外,很多状态压缩dp本身就是通过搜索算法实现的状态转移。

【代码实现】

/*
ID:shijieyywd
PROG:Hdu-1429
LANG:c++
*/
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>

using namespace std;

struct Node{
int x;
int y;
int step;
int key;
Node() {}
Node(int a, int b, int s, int k) : x(a), y(b), step(s), key(k) {}
};

int n, m, t;
int arr[25][25];
int door[25][25];
int key[25][25];
int Go[4][2] = {{0, 1}, {0, -1}, {-1, 0}, {1, 0}};
int sx, sy;
int ex, ey;
int vis[25][25][1049];

bool canGo(int x, int y, int k)
{
if (x >= 0 && x < n && y >= 0 && y < m && !arr[x][y])
{
if (vis[x][y][k]) return false;
if ((k & door[x][y]) == door[x][y]) return true;
}
return false;
}

int bfs() {
memset(vis, 0, sizeof(vis));
queue<Node> q;
Node s = Node(sx, sy, 0, 0);
q.push(s);
vis[sx][sy][0] = 1;
while (!q.empty())
{
Node e = q.front();
q.pop();
if (e.x == ex && e.y == ey) return e.step;
for (int i = 0; i < 4; i++)
{
int nx = e.x + Go[i][0];
int ny = e.y + Go[i][1];
if (canGo(nx, ny, e.key))
{
Node nex = Node(nx, ny, e.step + 1, e.key | key[nx][ny]);
vis[nx][ny][nex.key] = 1;
q.push(nex);
}
}
}
return 0;
}

int main() {
while (~scanf("%d %d %d\n", &n, &m, &t))
{
memset(arr, 0, sizeof(arr));
memset(door, 0, sizeof(door));
memset(key, 0, sizeof(key));
char c;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
scanf("%c", &c);
if (c == ‘*‘) arr[i][j] = 1;
else if (c == ‘@‘) sx = i, sy = j;
else if (c == ‘^‘) ex = i, ey = j;
else if (c >= ‘a‘ && c <= ‘z‘) key[i][j] = 1 << (c - ‘a‘);
else if (c >= ‘A‘ && c <= ‘Z‘) door[i][j] = 1 << (c - ‘A‘);
}
getchar();
}
int ans = bfs();
if (ans < t && ans) printf("%d\n", ans);
else printf("-1\n");
}
return 0;
}

---------------------
作者:qxAi
来源:CSDN
原文:https://blog.csdn.net/u011077606/article/details/43487421
版权声明:本文为博主原创文章,转载请附上博文链接!

原文地址:https://www.cnblogs.com/lyp-Bird/p/10349640.html

时间: 2024-11-03 22:02:53

[转]状态压缩dp(状压dp)的相关文章

『字符合并 区间dp 状压dp』

字符合并 Description 有一个长度为 n 的 01 串,你可以每次将相邻的 k 个字符合并,得到一个新的字符并获得一定分数.得到的新字符和分数由这 k 个字符确定.你需要求出你能获得的最大分数. Input Format 第一行两个整数n,k.接下来一行长度为n的01串,表示初始串. 接下来2^k行,每行一个字符ci和一个整数wi,ci表示长度为k的01串连成二进制后按从小到大顺序得到的第i种合并方案得到的新字符,wi表示对应的第i种方案对应获得的分数. 1<=n<=300,0<

2017.8.15 [Haoi2016]字符合并 区间dp+状压dp

[题目描述] 有一个长度为n的01串,你可以每次将相邻的k个字符合并,得到一个新的字符并获得一定分数.得到的新字符和分数由这k个字符确定.你需要求出你能获得的最大分数. [输入格式] 第一行两个整数n,k. 接下来一行长度为n的01串,表示初始串.输入的的相邻字符之间用一个空格隔开. 接下来2k行,每行一个字符ci和一个整数wi,ci表示长度为k的01串连成二进制后按从小到大顺序得到的第i种合并方案得到的新字符, wi表示对应的第i种方案对应获得的分数. [输出格式] 输出一个整数表示答案. [

CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)

问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高位数字不为0. 因此,符合我们定义的最小的有趣的数是2013.除此以外,4位的有趣的数还有两个:2031和2301. 请计算恰好有n位的有趣的数的个数.由于答案可能非常大,只需要输出答案除以1000000007的余数. 输入格式 输入只有一行,包括恰好一个正整数n (4 ≤ n ≤ 1000). 输

HDU 1074 Doing Homework DP 状压DP

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目描述: 给你所有课程的截止时间和工作时长, 一次只能做一种作业, 问最少罚时几天 N <= 15 解题思路: 由于N很小, 所以第一反应就是状压DP, 我们可以用一个15位二进制数来表示各个课程做完还是没做完, 然后从 S 从 1 到 1 << N 枚举 i 从 1 到 N 枚举, 如果S & (1<<i) 有效则说明i 属于情况 S, 这样我们从上一步S -

bzoj1076: [SCOI2008]奖励关(期望dp+状压dp)

1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2989  Solved: 1557[Submit][Status][Discuss] Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相

SCUT - 254 - 欧洲爆破 - 概率dp - 状压dp

https://scut.online/p/254 思路很清晰,写起来很恶心. #include<bits/stdc++.h> using namespace std; #define ll long long int dp[1<<20]; //dp[k] 从状态k开始直到k=0还需要的期望次数 0表示炸弹已爆炸,1表示炸弹未爆炸 int x[20]; int y[20]; int r[20]; int pa[20]; ll n; ll invn; int all1; int vi

玉米田(状压DP)

题目:P1879 [USACO06NOV]玉米田Corn Fields 参考:状态压缩动态规划 状压DP 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地.John打算在牧场上的某几格里种上美味的草,供他的奶牛们享用. 遗憾的是,有些土地相当贫瘠,不能用来种草.并且,奶牛们喜欢独占一块草地的感觉,于是John不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边. John想知道,如果不考虑草地的总块数

旅行商问题 状压DP

旅行商问题描述 现在有一个旅行商,在一个国家做生意.这个国家有N(2 <= N <= 15)个城市,城市之间有单行道可以通行,每条路都有相应的路费(0 <= d(I,j) <= 1000).现在旅行商要从0号城市出发,经过所有的城市,最后回到0号城市.要求所花的路费最小.保证这些道路能构成一个环(可以一笔画). 问题简化 给出一张带权有向有环图,用邻接矩阵表示,d(i,j)表示ij两个节点之间边的权值,INF表示没有边.要求从0号节点出发,经过每一个节点后正好回到0号节点,问经过边

HDU 1074 Doing Homework(状压DP)

Problem Description Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every teacher gives him a deadline of handing in the homework. If Ignatius hands in the homework after the deadline, the teacher will r