数据结构与算法--单源最短路径算法之dijkstra

单源最短路径之dijkstra算法

最优子问题:dis(s,...,e)是s到e的最短路径,在这条路径上的所有点之间dis(pi,pj)距离是最小的。

算法思路:

首先初始化,dis[s][i]是s到i的距离,直接相连的就是其距离,不直接相连的就是无穷大

下面是算法主要模块:

1.选取dis[i]最小的点加入到P{S}中,

2.计算是否更新dis[j],j是和i直接相连的

3.重复以上步骤,直到e

时间: 2024-10-13 22:34:26

数据结构与算法--单源最短路径算法之dijkstra的相关文章

SPFA算法-单源最短路径算法

1.介绍: SPFA算法:单源最短路径算法,一种高效的最短路径算法! 2.思路 (1)初始化 1>源点路径为0  :d[s]=0 ,其中s为源点 2>初始化d[N]为无穷大,即d[i]表示,源点s到i为无穷大INF 3>p[N]初始化为源点s或-1,表示没有前驱 (2)队列+松弛 1>读取队头顶点u,并将队头顶点u出队(记得消除标记): 2>将与点u相连的所有点v进行松弛操作,如果能更新估计值(即令d[v]变小),那么就更新; 3>另外,如果点v没有在队列中,那么要将点

单源最短路径算法---Dijkstra

Dijkstra算法树解决有向图G=(V,E)上带权的单源最短路径问题,但是要求所有边的权值非负. 解题思路: V表示有向图的所有顶点集合,S表示那么一些顶点结合,从源点s到该集合中的顶点的最终最短路径的权值(程序中用dist[i]表示)已经确定.算法反复选择具有最短路径估计的顶点u 属于 V-S(即未确定最短路径的点,程序中finish[i]=false的点),并将u加入到S中(用finish[i]=true表示),最后对u的所有输出边进行松弛. 程序实现:      输入数据: 5 7 0

带负权图的单源最短路径算法:Bellman-Ford算法

算法简介 前面介绍过图的单源最短路径算法Dijkstra算法,然而Dijkstra算法无法判断含负权边的图的最短路.如果遇到负权,在没有负权回路存在时(负权回路的含义是,回路的权值和为负.)即便有负权的边,也可以采用Bellman-Ford算法正确求出最短路径. Bellman-Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数 w是 边集 E 的映射.对图G运行Bellman-Ford算法的结果是一个布尔值,表

Bellman-Ford 单源最短路径算法

Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Lester Ford 分别发表于 1958 年和 1956 年,而实际上 Edward F. Moore 也在 1957 年发布了相同的算法,因此,此算法也常被称为 Bellman-Ford-Moore 算法. Bellman-Ford 算法和 Dijkstra 算法同为解决单源最短路径的算法.对于带权有向

Dijkstra 单源最短路径算法

Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年构思并于 1959 年发表.其解决的问题是:给定图 G 和源顶点 v,找到从 v 至图中所有顶点的最短路径. Dijkstra 算法采用贪心算法(Greedy Algorithm)范式进行设计.在最短路径问题中,对于带权有向图 G = (V, E),Dijkstra 算法的初始实现版本未使用最小优先

图论(四)------非负权有向图的单源最短路径问题,Dijkstra算法

Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负. Dijkstra算法是贪婪算法的一个很好的例子.设置一顶点集合S,从源点s到集合中的顶点的最终最短路径的权值均已确定.算法反复选择具有最短路径估计的顶点u,并将u加入到S中,对u 的所有出边进行松弛.如果可以经过u来改进到顶点v的最短路径的话,就对顶点v的估计值进行更新. 如上图,u为源点,顶点全加入到优先队列中. ,队列中最小值为u(值为0),u出队列,对u的出边进行松弛(x.v.w),队列最小值

算法导论--单源最短路径问题(Dijkstra算法)

转载请注明出处:勿在浮沙筑高台http://blog.csdn.net/luoshixian099/article/details/51918844 单源最短路径是指:给定源顶点s∈V到分别到其他顶点v∈V?{s}的最短路径的问题. Dijkstra算法采用贪心策略:按路径长度递增的顺序,逐个产生各顶点的最短路径.算法过程中需要维护一个顶点集S,此顶点集保存已经找到最短路径的顶点.还需要维护一个距离数组dist, dist[i]表示第i个顶点与源结点s的距离长度. Dijkstra算法思路: S

单源最短路径算法

目录 基本性质 Bellman Ford算法 spfa(Shortest Path Faster Algorithm) 算法 Dijkstra 算法 例题练习 主要参考算法导论 基本性质 使用min_w(s,v)表示源节点s到v的最短路径长度: w(u,v)表示节点u到v的权重: u.d表示源节点s到节点u的当前路径长度: 松弛操作 relax(u,v,w) { if(u.d + w < v.d) { v.d = u.d + w; } } 三角不等式 min_w(s,v) <= min_w(s

Dijkstra算法详细(单源最短路径算法)

介绍 对于dijkstra算法,很多人可能感觉熟悉而又陌生,可能大部分人比较了解bfs和dfs,而对dijkstra和floyd算法可能知道大概是图论中的某个算法,但是可能不清楚其中的作用和原理,又或许,你曾经感觉它很难,那么,这个时候正适合你重新认识它. Dijkstra能是干啥的? Dijkstra是用来求单源最短路径的 就拿上图来说,假如直到的路径和长度已知,那么可以使用dijkstra算法计算南京到图中所有节点的最短距离. 单源什么意思? 从一个顶点出发,Dijkstra算法只能求一个顶