告别手写parcelable

在eclipse中

  • 推荐parcelable code generator

用法

  • TODO

在android studio中

  • 推荐插件

用法

  • TODO
时间: 2025-01-02 05:40:23

告别手写parcelable的相关文章

告别手写接口文档时代,比Swagger功能更强大的LKADocument接口文档管理框架诞生了!

更详细的更全面的教程请观看作者亲自录制的视频教程,地址: https://edu.51cto.com/sd/9cb7fLKADocument视频教程 一.介绍 在前后端分离,分工更加明细化的今天,为了减少前端和后台开发人员的沟通成本,能够让他们做到并行开发,同时也能保证前端和后端开发人员所看到的接口文档的一致性,即时性,以此来大大提高工作效率.所以出现了一些非常优秀的接口管理工具,具有代表性的像Swagger,因为它能够通过注解或yml和JSON描述文件来自动生成接口文档.但是我觉得它不管是在配

Android 手写Binder 教你理解android中的进程间通信

关于Binder,我就不解释的太多了,网上一搜资料一堆,但是估计还是很多人理解的有困难.今天就教你如何从 app层面来理解好Binder. 其实就从我们普通app开发者的角度来看,仅仅对于android应用层的话,Binder就是客户端和服务端进行通信的媒介. AIDL就是我们理解Binder 最好的事例. 我们都知道 我们写好aidl 文件以后,开发工具 会自动帮我们生成好代码.实际上 我们最终apk里面 是只有这些代码的,我们写的aidl文件 是不会被打包进去的,也就是说aidl文件 实际上

wex5 实战 手写签名与上传

之前做过一个物流演示模块,有一个功能没做完,就是收件人收货后,可以手写签名并上传,替代传统纸张的签名.今天终于做完了. 一 效果演示: 后台图片上传成功 二 设计思路: 运用canvas插件jq-signature,制作手写签名,并通过二进制流方式上传图片 三 代码实现: 1 .下载引入插件jq-signature 手写签名插件,网上有很多,经过多种插件的逐步尝试,只有插件jq-signature达到了我想要的效果; 原因有二:1,支持手机触摸,web,鼠标.其它有的不支持手机触摸. 2,直接转

iOS开发UI基础—手写控件,frame,center和bounds属性

一.手写控件 1.手写控件的步骤 (1)使用相应的控件类创建控件对象 (2)设置该控件的各种属性 (3)添加控件到视图中 (4)如果是button等控件,还需考虑控件的单击事件等 (5)注意:View Contollor和view的关系 2.注意点 在OC开发中,Storyboard中的所有操作都可以通过代码实现,程序员一定要熟练掌握代码布局界面的能力! 设置控件监听方法的示例代码如下: [btn addTarget:self action:@selector(click:) forContro

logistic回归与手写识别例子的实现

本文主要介绍logistic回归相关知识点和一个手写识别的例子实现 一.logistic回归介绍: logistic回归算法很简单,这里简单介绍一下: 1.和线性回归做一个简单的对比 下图就是一个简单的线性回归实例,简单一点就是一个线性方程表示 (就是用来描述自变量和因变量已经偏差的方程) 2.logistic回归 可以看到下图,很难找到一条线性方程能将他们很好的分开.这里也需要用到logistic回归来处理了. logistic回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,

KNN分类算法实现手写数字识别

需求: 利用一个手写数字"先验数据"集,使用knn算法来实现对手写数字的自动识别: 先验数据(训练数据)集: ?数据维度比较大,样本数比较多. ? 数据集包括数字0-9的手写体. ?每个数字大约有200个样本. ?每个样本保持在一个txt文件中. ?手写体图像本身的大小是32x32的二值图,转换到txt文件保存后,内容也是32x32个数字,0或者1,如下: 数据集压缩包解压后有两个目录:(将这两个目录文件夹拷贝的项目路径下E:/KNNCase/digits/) ?目录trainingD

使用Caffe进行手写数字识别执行流程解析

之前在 http://blog.csdn.net/fengbingchun/article/details/50987185 中仿照Caffe中的examples实现对手写数字进行识别,这里详细介绍下其执行流程并精简了实现代码,使用Caffe对MNIST数据集进行train的文章可以参考  http://blog.csdn.net/fengbingchun/article/details/68065338 : 1.   先注册所有层,执行layer_factory.hpp中类LayerRegis

07 训练Tensorflow识别手写数字

打开Python Shell,输入以下代码: 1 import tensorflow as tf 2 from tensorflow.examples.tutorials.mnist import input_data 3 4 # 获取数据(如果存在就读取,不存在就下载完再读取) 5 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 6 7 # 输入 8 x = tf.placeholder("flo

【转】机器学习教程 十四-利用tensorflow做手写数字识别

模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基于tensorflow来介绍和演示 请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址 什么是tensorflow tensor意思是张量,flow是流. 张量原本是力学里的术语,表示弹性介质中各点应力状态.在数学中,张量表示的是一种广义的"数量",0阶张量