A n * m grid as follow:
Count the number of triangles, three of whose vertice must be grid-points.
Note that the three vertice of the triangle must not be in a line(the right picture is not a triangle).
Input
The input consists of several cases. Each case consists of two positive integers
n and m (1 ≤ n, m ≤ 1000).
Output
For each case, output the total number of triangle.
Sample Input
1 1 2 2
Sample Output
4 76
hint
hint for 2nd case: C(9, 3) - 8 = 76
题目意思 : 给你矩形长度,求在里面取3个点,问可以组成三角形的个数?
一共有(n+1)*(m+1)个点,去3个
然后减去同行取3个,同列取3个;
最后减去左斜和右斜的,这种情况居然是枚举三角形的长高!!!!!
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<queue> #include<stack> #include<vector> #define eps 1e-8 using namespace std; #define N 10005 typedef long long ll; ll L(ll x) { return (ll)(x*(x-1)*(x-2)/6); } ll gcd(ll n,ll m) { if(m==0) return n; return gcd(m,n%m); } int main() { ll i,j,n,m; while(~scanf("%lld%lld",&n,&m)) { n++; m++; ll ans=L(n*m)-L(n)*m-L(m)*n; for(i=2;i<n;i++) for(j=2;j<m;j++) { ll temp=gcd(i,j)-1; temp=temp*(n-i)*(m-j)*2; ans-=temp; } printf("%lld\n",ans); } return 0; }
时间: 2024-11-03 01:19:15