整数分解的标程

经常用到的一个小技巧,将整数分解成一个个小数如:234分解成2 3 4


因为自己总是忘记,整理成标程,以后可以直接套用

 1 int fenjie(int x)//分解整数x后求和
 2 {
 3   int sum=0;
 4     while(x)
 5     {
 6         sum+=x%10;
 7         x/=10;  //割掉最后位
 8     }
 9     return sum;
10 }
时间: 2024-10-05 03:47:26

整数分解的标程的相关文章

数论快速入门(同余、扩展欧几里德、中国剩余定理、大素数测定和整数分解、素数三种筛法、欧拉函数以及各种模板)

数学渣渣愉快的玩了一把数论,来总结一下几种常用的算法入门,不过鶸也是刚刚入门, 所以也只是粗略的记录下原理,贴下模板,以及入门题目(感受下模板怎么用的) (PS:文中蓝色字体都可以点进去查看百度原文) 附赠数论入门训练专题:点我打开专题(题目顺序基本正常,用以配套数论入门) 一.同余定理 简单粗暴的说就是:若 a-b == m 那么 a%m == b%m 这个模运算性质一眼看出...直接上入门水题: Reduced ID Numbers 附AC代码(这个也没啥模板....知道就好) #inclu

[水+整数分解] poj 1365 Prime Land

题意: 给2*n个数,输入的这些数构成 sum=(a[1]^b[1])*(a[2]^b[2])... 其实就是整数分解完的数. 然后让你输出分解sum-1的结果. 从大到小. 思路: 就是输入麻烦点. 注意题目说了1的时候要输出空行. 代码: #include"cstdlib" #include"cstdio" #include"cstring" #include"cmath" #include"queue"

poj 2992 Divisors 整数分解

设m=C(n,k)=n!/((n-k)!*k!) 问题:求m的因数的个数 将m分解质因数得到 p1有a1个 p2有a2个 .... 由于每个质因数可以取0~ai个(全部取0就是1,全部取ai就是m)最后的答案就是(a1+1)*(a2+1)*....* 注意不能直接将m分解,因为太大,所以要先分解n,n-k,k,根据他们再来加减. #include <iostream> #include <cstdio> #include <cmath> #include<cstr

HDU 3864 D_num Miller Rabin 质数判断+Pollard Rho大整数分解

链接:http://acm.hdu.edu.cn/showproblem.php?pid=3864 题意:给出一个数N(1<=N<10^18),如果N只有四个约数,就输出除1外的三个约数. 思路:大数的质因数分解只能用随机算法Miller Rabin和Pollard_rho,在测试多的情况下正确率是由保证的. 代码: #include <iostream> #include <cstdio> #include <cstring> #include <c

VJ 1033 整数分解(版本2)

描述 整数分解(版本2) 一个正整数可以分解成若干个自然数之和.请你编一个程序,对于给出的一个正整数n(1<=n<=1500),求出满足要求的分解方案,并使这些自然数的乘积m达到最大. 例如n=10,则可以分解为2+2+3+3,乘积m=2*2*3*3=36 格式 输入格式 一个正整数n 输出格式 输出分解的自然数的最大乘积m 样例1 样例输入1[复制] 10 样例输出1[复制] 36 提示 简单题,所有数据随机生成 题解 : n <= 3 时, 答案最大为n,即不拆. n > 3

POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the num

“玲珑杯”算法比赛 Round #14题目与标程

"玲珑杯"算法比赛 Round #14By:wxh010910 Start Time:2017-05-13 16:00:00 End Time:2017-05-13 18:30:00 Refresh Time:2017-05-20 09:51:24 Public p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #454545 } p.p2 { margin:

POJ2429_GCD &amp;amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 Description Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and the least common multiple (LCM) of a and b.

HDU1164_Eddy&amp;#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6664    Accepted Submission(s): 3997 Problem Description Eddy's interest is very extensive, recently he is interested in prime