【网络流24题】最长不下降子序列(最大流,动态规划)

【网络流24题】最长不下降子序列(最大流,动态规划)

题面

Cogs

题解

很有趣的一道题目
尽管我自己还是有一些懵逼

第一问,直接大力DP一下,不解释了

第二问,考虑到一个长度为ans的子序列的开头
他的dp值一定等于ans,
所以,如果一个点的dp值为ans,就从源点连过去,容量为1

因为每个数只能用一次,因此拆点
自己向自己的新点连容量为1的边

一个子序列的结束的位置其dp值必定为1
所以从dp值为1的新点向汇点连边,容量为1

接下来考虑点与点之间的关系
如果dp[i]=dp[j]+1 并且 a[i]<=a[j]
很显然的,这两个点可以连在一起
因为是一条路径,所以流要回到一侧继续寻找
所以从j‘连向i

第一问就这样跑最大流

第二问,因为1和n无限制
所以,如果1和n满足值开头或者结尾的条件的话
就把从源点或者汇点以及连向自己拆出来的点的边的容量改为INF即可

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 20000
#define MAXL 500000
#define INF 1000000000
inline int read()
{
    int x=0,t=1;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
struct Line
{
    int v,next,w;
}e[MAXL];
int h[MAX],cnt;
int S,T,n,m,K,ans,f[MAX],a[MAX],ret;
inline void Add(int u,int v,int w)
{
    e[cnt]=(Line){v,h[u],w};
    h[u]=cnt++;
    e[cnt]=(Line){u,h[v],0};
    h[v]=cnt++;
}
int level[MAX];
bool BFS()
{
    memset(level,0,sizeof(level));
    level[S]=1;
    queue<int> Q;
    Q.push(S);
    while(!Q.empty())
    {
        int u=Q.front();Q.pop();
        for(int i=h[u];i!=-1;i=e[i].next)
        {
            int v=e[i].v;
            if(e[i].w&&!level[v])
                level[v]=level[u]+1,Q.push(v);
        }
    }
    return level[T];
}
int DFS(int u,int flow)
{
    if(flow==0||u==T)return flow;
    int ret=0;
    for(int i=h[u];i!=-1;i=e[i].next)
    {
        int v=e[i].v;
        if(e[i].w&&level[v]==level[u]+1)
        {
            int dd=DFS(v,min(flow,e[i].w));
            flow-=dd;ret+=dd;
            e[i].w-=dd;e[i^1].w+=dd;
        }
    }
    return ret;
}
int Dinic()
{
    //int ret=0;
    while(BFS())ret+=DFS(S,INF);
    return ret;
}
void DP()
{
    for(int i=n;i;i--)
    {
        f[i]=1;
        for(int j=i+1;j<=n;++j)
            if(a[j]>=a[i])
                f[i]=max(f[i],f[j]+1);
    }
    for(int i=1;i<=n;++i)ans=max(ans,f[i]);
    printf("%d\n",ans);
}
int main()
{
    freopen("alis.in","r",stdin);
    freopen("alis.out","w",stdout);
    n=read();
    for(int i=1;i<=n;++i)a[i]=read();
    DP();
    S=0;T=n+n+1;

    memset(h,-1,sizeof(h));cnt=0;
    for(int i=1;i<=n;++i)Add(i,i+n,1);
    for(int i=1;i<=n;++i)if(f[i]==ans)Add(S,i,1);
    for(int i=1;i<=n;++i)if(f[i]==1)Add(i+n,T,1);
    for(int i=1;i<=n;++i)
        for(int j=i+1;j<=n;++j)
            if(a[i]<=a[j]&&f[j]==f[i]-1)Add(i+n,j,1);
    printf("%d\n",Dinic());

    if(f[1]==ans)Add(S,1,INF),Add(1,1+n,INF);
    Add(n,n+n,INF);Add(n+n,T,INF);
    printf("%d\n",Dinic());

    return 0;
}

原文地址:https://www.cnblogs.com/cjyyb/p/8185824.html

时间: 2024-10-18 00:47:53

【网络流24题】最长不下降子序列(最大流,动态规划)的相关文章

洛谷2766:[网络流24题]最长不下降子序列问题——题解

https://www.luogu.org/problemnew/show/P2766 给定正整数序列x1,...,xn . (1)计算其最长不下降子序列的长度s. (2)计算从给定的序列中最多可取出多少个长度为s的不下降子序列. (3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长度为s的不下降子序列. 第一问用dp求解不多说了. 考虑第二问,每个数只用一次很好办,把数拆点(入点和出点)中间连边权为1的边即可. 现在的问题就是如何让它能够跑满s个点. 我们设dp[i

P2766 [网络流24题]最长不下降子序列问题

ha~ ?问题描述: 给定正整数序列$x_1,...,x_n$ .$n<=500$ 求(1)计算其最长不下降子序列的长度$s$. (2)计算从给定的序列中最多可取出多少个长度为$s$的不下降子序列. (3)如果允许在取出的序列中多次使用$x_1$和$x_n$,则从给定序列中最多可取出多少个长度为$s$的不下降子序列. (1)暴力n方解决 (2)建分层图,把图每个顶点i按照F[i]的不同分为若干层,这样图中从S出发到T的任何一条路径都是一个满足条件的最长不下降子序列.由 S 向所有$ f_i =

[网络流24题]最长不下降子序列问题

[luogu 2766] 最长不下降子序列问题 传送门 第一问: \(O(n^2)\) 的DP求LIS 为了下面叙述方便,我们将DP过程讲一遍 子状态:dp[i]表示以a[i]结尾的LIS长度 初始条件:dp[i]=1 状态转移方程:\(dp[i]=dp[j]+1(j<i,a[j]\leq a[i])\) 第二问: 我们发现若a[j]加上a[i]可以构成一个不下降子序列,则\(j<i,a[j] \leq a[i]\) 又发现每个元素只能在一个序列中,考虑拆点 建图方法: 原点S=0,T=2n+

[网络流24题] 最长递增子序列

[网络流24题] 最长递增子序列 «问题描述:给定正整数序列x1,..., xn.(1)计算其最长递增子序列的长度s.(2)计算从给定的序列中最多可取出多少个长度为s的递增子序列.(3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长度为s的递增子序列. 注意:这里的最长递增子序列即最长不下降子序列!!!«编程任务:设计有效算法完成(1)(2)(3)提出的计算任务.«数据输入:由文件alis.in提供输入数据.文件第1 行有1个正整数n(n<=500),表示给定序列的长

[网络流24题] 最长递增子序列 (最多不相交路径---网络最大流)

731. [网络流24题] 最长递增子序列 ★★★☆ 输入文件:alis.in 输出文件:alis.out 简单对比 时间限制:1 s 内存限制:128 MB «问题描述: 给定正整数序列x1,..., xn. (1)计算其最长递增子序列的长度s. (2)计算从给定的序列中最多可取出多少个长度为s的递增子序列. (3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长 度为s的递增子序列. «编程任务: 设计有效算法完成(1)(2)(3)提出的计算任务. «数据输入: 由

【网络流24题】航空线路问题(费用流)

[网络流24题]航空线路问题(费用流) 题面 Cogs数据有误,提供洛谷题面 题解 这题和原来做过的一道题周游加拿大是一模一样的 所以,这题DP+记录方案应该也是可行的 来考虑网络流的做法 现在的来回,被看成是去两次 所以流量被限定死了,为2 因此要考虑费用流来求解. 每个点只能经过一次 很显然先拆点 如果一个城市被访问了 那么,他的两个点直接的流量是一定存在的 为了记录下这个点被访问过 所以,给定它一个费用1 然后其他的连边和原来做的题目没有什么区别 对于每一条航线,从\(i'\)向\(j\)

【网络流24题】骑士共存问题(最大流)

[网络流24题]骑士共存问题(最大流) 题面 Cogs 题解 这题本质上和方格取数问题没有任何区别 首先也是可以黑白染色 因为马必定会跳到异色点上面去 然后同样的,源点向一种颜色,另一种颜色向汇点连边 因为代价就是1,所以容量都是1 这里考虑的"相邻"的情况是马的跳法 因此,枚举从当前点能够到达的位置,连一条容量为INF的边过去 障碍直接特殊考虑就行了 最后的答案就是所有可以放的位置数减去最大流(最小割) #include<iostream> #include<cst

LiberOJ #6013. 「网络流 24 题」负载平衡 最小费用最大流 供应平衡问题

#6013. 「网络流 24 题」负载平衡 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬运. 输入格式 文件的第 1 11 行中有 1 11 个正整数 n nn,表示有 n nn 个仓库.第 2 22 行中有 n nn 个

[网络流24题]最长递增子序列问题

题目大意:给定长度为n的序列a,求:1.最长递增子序列长度:2.最多选出几个不相交的最长递增子序列:3.最多选出几种在除了第1个和第n个以外的地方不相交的最长递增子序列.(n<=1000) 思路:先倒着DP,求出f[i]表示以a[i]开头的最长的递增子序列长度,然后建图,若f[i]=最长递增子序列长度则S向i连1,若f[i]=1则i向T连1,若i<j且a[i]<a[j]且f[i]=f[j]+1则i向j连1,为保证每个点只被流一次,拆成入点和出点,流量限制1,跑最大流即可解决第二问,点1和

[网络流 24 题]最长k可重区间集(费用流)

Description 给定实直线L 上n 个开区间组成的集合I,和一个正整数k,试设计一个算法,从开区间集合I 中选取出开区间集合S属于I,使得在实直线L 的任何一点x,S 中包含点x 的开区间个数不超过k,且sum(|z|)z属于S,达到最大.这样的集合S称为开区间集合I的最长k可重区间集.sum(|z|) z属于S称为最长k可重区间集的长度.对于给定的开区间集合I和正整数k,计算开区间集合I的最长k可重区间集的长度. Solution 1.离散化 然后从每个点i向i+1连一条流量为INF,