CS229 1

1.机器学习

机器学习是工具,具体应用到某个实际场景下,才是目的。

2.分类

a 监督学习,包括回归(regression),分类(classification)。回归问题,数据可以是连续或者离散,分类问题,数据一般是离散的。

b 理论学习,机器学习目前主流的算法,用算法工具结合具体使用场景,解决问题。

c 无监督学习,包括聚类,通过聚类,转换成类似监督学习的分类模型,当然,无监督模式应用的范围更广。

d 强化学习,设计回报函数,类似狗的反射弧效应。

课程信息 http://cs229.stanford.edu

时间: 2024-10-24 16:43:55

CS229 1的相关文章

cs229 斯坦福机器学习笔记(二)

LR回顾 LR是机器学习入门的第一道坎,总结一下,Linear Regression 和logistic Regression都是属于GLM,套了logistic之后,输出结果就变成一个概率了,loss function和 likelihood function取反是类似的东西,都可以作为优化的目标.但我感觉 likelihood function从概率统计上来说,更有理论支持吧.loss function 直接对残差求平方和,直觉上也是挺合理的:当然,对于logistic Regression

cs229 斯坦福机器学习笔记(一)

前言 说到机器学习,很多人推荐的学习资料就是斯坦福Andrew Ng的cs229,有相关的视频和讲义.不过好的资料 != 好入门的资料,Andrew Ng在coursera有另外一个机器学习课程,更适合入门.课程有video,review questions和programing exercises,视频虽然没有中文字幕,不过看演示的讲义还是很好理解的(如果当初大学里的课有这么好,我也不至于毕业后成为文盲..).最重要的就是里面的programing exercises,得理解透才完成得来的,毕

斯坦福CS229机器学习课程笔记七:算法诊断、误差分析以及如何开始一个机器学习问题

这一节是Andrew对应用机器学习给出的建议,虽然没有数学公式,但却是十分重要的一课. Debugging Learning Algorithms 假设要做一个垃圾邮件分类的模型,已经从海量的词汇表中选出一个较小的词汇子集(100个单词)作为特征. 用梯度上升算法实现了贝叶斯逻辑回归,但测试集的错误率达到了20%,这显然太高了. 如何解决这个问题? 收集更多的训练样本 进一步减少特征数 增加特征数 改变特征(考虑邮件标题/正文) 将梯度上升多运行几个迭代 尝试牛顿方法 使用不同的λ 改用SVM

斯坦福CS229机器学习课程笔记六:学习理论、模型选择与正则化

稍微了解有监督机器学习的人都会知道,我们先通过训练集训练出模型,然后在测试集上测试模型效果,最后在未知的数据集上部署算法.然而,我们的目标是希望算法在未知的数据集上有很好的分类效果(即最低的泛化误差),为什么训练误差最小的模型对控制泛化误差也会有效呢?这一节关于学习理论的知识就是让大家知其然也知其所以然. 学习理论 1.empirical risk minimization(经验风险最小化) 假设有m个样本的训练集,并且每个样本都是相互独立地从概率分布D中生成的.对于假设h,定义training

斯坦福CS229机器学习课程笔记二:GLM广义线性模型与Logistic回归

一直听闻Logistic Regression逻辑回归的大名,比如吴军博士在<数学之美>中提到,Google是利用逻辑回归预测搜索广告的点击率.因为自己一直对个性化广告感兴趣,于是疯狂google过逻辑回归的资料,但没有一个网页资料能很好地讲清到底逻辑回归是什么.幸好,在CS229第三节课介绍了逻辑回归,第四节课介绍了广义线性模型,综合起来总算让我对逻辑回归有了一定的理解.与课程的顺序相反,我认为应该先了解广义线性模型再来看逻辑回归,也许这也是为什么讲逻辑回归的网页资料总让人感觉云里雾里的原因

斯坦福CS229机器学习课程笔记一:线性回归与梯度下降算法

应该是去年的这个时候,我开始接触机器学习的相关知识,当时的入门书籍是<数据挖掘导论>.囫囵吞枣般看完了各个知名的分类器:决策树.朴素贝叶斯.SVM.神经网络.随机森林等等:另外较为认真地复习了统计学,学习了线性回归,也得以通过orange.spss.R做一些分类预测工作.可是对外说自己是搞机器学习的还是不太自信,毕竟和科班出身的各位大牛相比自己对这些模型.算法的理解只能算是“知其然而不知其所以然”,用起来总感觉哪里不对劲. 因此,去年早早地就把网易公开课上Andrew大神的斯坦福CS229课程

CS229 笔记02

CS229 笔记02 公式推导 $ {\rm Let}, A, B, C \in {\rm {R}}^{n \times n}. $ $ \text{Fact.1: If}, a \in {\rm R},, {\rm tr},a=a $ 显然. $\text{Fact.2:}, {\rm{tr}}A={\rm{tr}}A^T $ \[ \begin{eqnarray*} {\rm {tr}}\,A&=&\prod_{i=1}^n{a_{ii}} \\ &=&{\rm {tr

CS229 笔记03

CS229 笔记03 局部加权线性回归 Non-Parametric Learning Algorithm (非参数学习方法) Number of parameters grows with the size of sample. (参数的数目随着样本的数目增加而增加.) Locally Weighted Regression (局部加权线性回归) 损失函数的定义为: $ J_\Theta=\sum_i{w^{(i)}(y^{(i)}-\Theta^{{\rm T}}x^{(i)})^2} $

CS229 笔记07

CS229 笔记07 Optimal Margin Classifier 回顾SVM \[ \begin{eqnarray*} h_{W,b}&=&g(W^{\rm T}x+b)\\[1em] g(z)&=&\begin{cases}1&z\geq0\\[1em]-1&z<0\end{cases}\\[1em] y&\in&\{-1,1\}\\[1em] \hat\gamma^{(i)}&=&y^{(i)}\left(W