第八章:矩阵和线性变换

第一节:旋转

1.2D中的旋转

  上一节中讲了矩阵的几何意义,矩阵的每一行可以看做该维度向量的分解坐标轴向量所对应的最终状态。接下来我们以2D单位向量来讨论2D向量的旋转问题。

  

  上图中我们以2D向量[1 1]来演示旋转θ角后的矩阵表示。首先分解2D向量[1 1],然后[1 1]向量的旋转其实就是分解的p和q向量的旋转,旋转后得到的p‘和q‘向量就是旋转后的向量。我们可以根据三角函数求出旋转后的分解向量p‘和q‘。然后我们根据矩阵的几何定义,可以推理出2D向量的旋转矩阵。

  

时间: 2024-10-12 22:36:33

第八章:矩阵和线性变换的相关文章

【转载】理解矩阵(二)

原文:理解矩阵(二) 接着理解矩阵. 上一篇里说“矩阵是运动的描述”,到现在为止,好像大家都还没什么意见.但是我相信早晚会有数学系出身的网友来拍板转.因为运动这个概念,在数学和物理里是跟微积分联系在一起的.我们学习微积分的时候,总会有人照本宣科地告诉你,初等数学是研究常量的数学,是研究静态的数学,高等数学是变量的数学,是研究运动的数学.大家口口相传,差不多人人都知道这句话.但是真知道这句话说的是什么意思的人,好像也不多.简而言之,在我们人类的经验里,运动是一个连续过程,从A点到B点,就算走得最快

深入理解矩阵——矩阵革命(完全版)

矩阵革命-理解矩阵线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙.比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用.大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻

关于矩阵的本质

前不久chensh出于不可告人的目的,要充当老师,教别人线性代数.于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次.很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势的学生认为是神经病,还是比较难的事情. 可怜的chensh,谁让你趟这个地雷阵?!色令智昏啊! 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙.比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个"前无古人,后无来者"的古怪

理解矩阵

前不久chensh出于不可告人的目的,要充当老师,教别人线性代数.于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次.很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势的学生认为是神经病,还是比较难的事情. 可怜的chensh,谁让你趟这个地雷阵?!色令智昏啊! 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙.比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个"前无古人,后无来者"的古怪

关于矩阵最通俗的解释-超级经典zz

线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙.比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用.大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免

理解矩阵(转载)

线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙.比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个“前无古人,后无来者”的古怪概念,然后用逆序数给出行列式的一个极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热闹,可就是压根看不出这个东西有嘛用.大多数像我一样资质平庸的学生到这里就有点犯晕:连这是个什么东西都模模糊糊的,就开始钻火圈表演了,这未免

【转】【矩阵】三维坐标旋转矩阵算法

3D数学 ---- 矩阵和线性变换 一般来说,方阵能描述任意线性变换.线性变换保留了直线和平行线,但原点没有移动.线性变换保留直线的同时,其他的几何性质如长度.角度.面积和体 积可能被变换改变了.从非技术意义上说,线性变换可能“拉伸”坐标系,但不会“弯曲”或“卷折”坐标系. 矩阵是怎样变换向量的 向量在几何上能被解释成一系列与轴平行的位移,一般来说,任意向量v都能写成“扩展”形式: 另一种略有差别的形式为: 注意右边的单位向量就是x,y,z轴,这里只是将概念数学化,向量的每个坐标都表明了平行于相

真正理解矩阵

来源 转自孟岩,从很独特的角度理解矩阵. 理解矩阵(一) 理解矩阵(二) 理解矩阵(三) 笔记 空间是能够容纳运动的对象的集合.在线性空间中,选定了基(坐标系)后,就可用向量刻画对象:用矩阵刻画运动,而用矩阵乘向量刻画施加的运动.故矩阵的本质就是运动的描述,能刻画线性空间中点的运动:而向量是简单的矩阵. 这里的运动不同于物理中连续的运动,而是瞬间的从一点到另一点的运动(即跃迁),术语为“变换”,因此,矩阵是对线性空间里变换(即线性变换)的描述.选的基(坐标系)不同,同一个变换就有不同的描述,即有

[转载]矩阵及变换,以及矩阵在DirectX和OpenGL中的运用问题:左乘/右乘,行优先/列优先

[转载]http://www.xuebuyuan.com/882848.html (一)首先,无论dx还是opengl,所表示的矢量和矩阵都是依据线性代数中的标准定义的:“矩阵A与B的乘积矩阵C的第i行第j列的元素c(ij)等于A的第i行于B的第j列的对应元素乘积的和.”(实用数学手册,科学出版社,第二版)例如c12 = a11*b11+a12*b21+a12*b13... (二)在明确了这一点后,然后我们再看“矩阵的存储方式”,矩阵存储方式有两种,一种是“行主序(row-major order