NYOJ 737---石子归并(GarsiaWachs算法)

原题链接

描述    有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。

输入
有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
输出
输出总代价的最小值,占单独的一行
样例输入
3
1 2 3
7
13 7 8 16 21 4 18
样例输出
9
239

对于石子合并问题,有一个最好的算法,那就是GarsiaWachs算法。时间复杂度为O(n^2)。

它的步骤如下:

设序列是stone[],从左往右,找一个满足stone[k-1] <= stone[k+1]的k,找到后合并stone[k]和stone[k-1],再从当前位置开始向左找最大的j,使其满足stone[j] > stone[k]+stone[k-1],插到j的后面就行。一直重复,直到只剩下一堆石子就可以了。在这个过程中,可以假设stone[-1]和stone[n]是正无穷的。

举个例子:

186 64 35 32 103

因为35<103,所以最小的k是3,我们先把35和32删除,得到他们的和67,并向前寻找一个第一个超过67的数,把67插入到他后面,得到:186 67 64 103,现在由5个数变为4个数了,继续:186 131 103,现在k=2(别忘了,设A[-1]和A[n]等于正无穷大)234 186,最后得到420。最后的答案呢?就是各次合并的重量之和,即420+234+131+67=852。

 

基本思想是通过树的最优性得到一个节点间深度的约束,之后证明操作一次之后的解可以和原来的解一一对应,并保证节点移动之后他所在的深度不会改变。具体实现这个算法需要一点技巧,精髓在于不停快速寻找最小的k,即维护一个“2-递减序列”朴素的实现的时间复杂度是O(n*n),但可以用一个平衡树来优化,使得最终复杂度为O(nlogn)。

代码如下:

#include <iostream>
#include <string.h>
#include <stdio.h>  

using namespace std;
const int N = 50005;  

int stone[N];
int n,t,ans;  

void combine(int k)
{
    int tmp = stone[k] + stone[k-1];
    ans += tmp;
    for(int i=k;i<t-1;i++)
        stone[i] = stone[i+1];
    t--;
    int j = 0;
    for(j=k-1;j>0 && stone[j-1] < tmp;j--)
        stone[j] = stone[j-1];
    stone[j] = tmp;
    while(j >= 2 && stone[j] >= stone[j-2])
    {
        int d = t - j;
        combine(j-1);
        j = t - d;
    }
}  

int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        if(n == 0) break;
        for(int i=0;i<n;i++)
            scanf("%d",stone+i);
        t = 1;
        ans = 0;
        for(int i=1;i<n;i++)
        {
            stone[t++] = stone[i];
            while(t >= 3 && stone[t-3] <= stone[t-1])
                combine(t-2);
        }
        while(t > 1) combine(t-1);
        printf("%d\n",ans);
    }
    return 0;
}  
时间: 2024-10-06 01:01:49

NYOJ 737---石子归并(GarsiaWachs算法)的相关文章

POJ 1738:An old Stone Game 石子归并 (GarsiaWachs算法)

There is an old stone game.At the beginning of the game the player picks n(1<=n<=50000) piles of stones in a line. The goal is to merge the stones in one pile observing the following rules: At each step of the game,the player can merge two adjoining

NYOJ 737 石子合并(一)

分析: 本题为区间型动态规划,dp[i][j] 表示从第 i 堆合并到第 j 堆的最小代价, sum[i][i] 表示第 i 堆到第 j 堆的石子总和,则动态转移方程: dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + sum[i][j])  (i <= k <= j - 1). 代码如下: 1 #include<cstdio> 2 #include<iostream> 3 #include<algorithm&

NYOJ 737 石子合并(一) (区间DP+平行四边形优化)

题目地址:NYOJ 737 定义状态dp [ i ] [ j ]为从第i个石子到第j个石子的合并最小代价. 没有优化的代码如下:耗时248ms. #include <iostream> #include <string.h> #include <math.h> #include <queue> #include <algorithm> #include <stdlib.h> #include <map> #include

区间DP [NYOJ 737] 石子合并(一)

石子合并(一) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述     有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求出总的代价最小值. 输入 有多组测试数据,输入到文件结束.每组测试数据第一行有一个整数n,表示有n堆石子.接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开 输出 输出总代价的最小值,占单

nyoj 737 石子合并(一)。区间dp

http://acm.nyist.net/JudgeOnline/problem.php?pid=737 数据很小,适合区间dp的入门 对于第[i, j]堆,无论你怎么合并,无论你先选哪两堆结合,当你把[i, j]合成一堆的那一步的时候,花费肯定就是sum[i....j] 可以用纸模拟下. 那么我们设dp[i][j]表示把i...j堆合成一堆的时候的最小花费. 比如dp[1][1] = 0.dp[1][2] = a[1] + a[2]; 那么要求dp[i][j],则可以是dp[i][k] + d

nyoj 737 石子合并(区间DP)

737-石子合并(一) 内存限制:64MB 时间限制:1000ms 特判: No通过数:28 提交数:35 难度:3 题目描述: 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求出总的代价最小值. 输入描述: 有多组测试数据,输入到文件结束. 每组测试数据第一行有一个整数n,表示有n堆石子. 接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空

区间DP基础——石子归并

http://acm.nyist.net/JudgeOnline/problem.php?pid=737 石子归并:先枚举要合并的区间长,然后枚举相应的区间左端点,最后枚举区间中间的划分点,这样,就可以由小到大递推解决区间问题了. 转移方程:dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]) 1 #include<iostream> 2 #include<cstdio> 3 #define INF

nyoj 石子归并(1)

石子合并(一) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述     有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求出总的代价最小值. 输入 有多组测试数据,输入到文件结束. 每组测试数据第一行有一个整数n,表示有n堆石子. 接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开 输出 输出总代价的最小值,

NYOJ 737 合并石子(一)

石子合并(一) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述     有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求出总的代价最小值. 输入 有多组测试数据,输入到文件结束. 每组测试数据第一行有一个整数n,表示有n堆石子. 接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开 输出 输出总代价的最小值,