LA 7362 Farey (数学,欧拉函数)

题意:给定一个数 n,问你0<= a <=n, 0 <= b <= n,有多少个不同的最简分数。

析:这是一个欧拉函数题,由于当时背不过模板,又不让看书,我就暴力了一下,竟然AC了,才2s,题目是给了3s,很明显是由前面递推,前面成立的,后面的也成立,

只要判定第 i 个有几个,再加前 i-1 个就好,第 i 个就是判断与第 i 个互质的数有多少,这就是欧拉函数了。

代码如下:

这是欧拉函数的。

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <stack>
using namespace std;

typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 10000 + 5;
const int mod = 1e9;
const char *mark = "+-*";
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
int n, m;
inline bool is_in(int r, int c){
    return r >= 0 && r < n && c >= 0 && c < m;
}
int ans[maxn];
int phi[maxn];

void init(){
    memset(phi, 0, sizeof(phi));
    phi[1] = 1;
    for(int i = 2; i <= 10000; ++i) if(!phi[i])
        for(int j = i; j <= 10000; j += i){
            if(!phi[j])  phi[j] = j;
            phi[j] = phi[j] / i * (i-1);
        }

    ans[2] = 3;
    for(int i = 3; i <= 10000; ++i)
        ans[i] = ans[i-1] + phi[i];
}

int main(){
    init();
    int T;   cin >> T;
    while(T--){
        scanf("%d %d", &m, &n);
        printf("%d %d\n", m, ans[n]);
    }
    return 0;
}

  

这是我暴力的:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <stack>
using namespace std;

typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 100 + 5;
const int mod = 1e9;
const char *mark = "+-*";
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
int n, m;
inline bool is_in(int r, int c){
    return r >= 0 && r < n && c >= 0 && c < m;
}
int ans[10005];

int main(){
    ans[1] = 2;  ans[2] = 3;
    for(int i = 3; i <= 10000; ++i){
        int cnt = 0;
        for(int j = 1; j <= i/2; ++j){
            if(__gcd(j, i) == 1) ++cnt;
        }
        ans[i] = ans[i-1] + 2*cnt;
    }
    int T; cin >> T;
    while(T--){
        scanf("%d %d", &m, &n);
        printf("%d %d\n", m, ans[n]);
    }
    return 0;
}

  

时间: 2024-12-19 00:08:38

LA 7362 Farey (数学,欧拉函数)的相关文章

【学习总结】数学-欧拉函数

定义 欧拉函数f(n)表示小于n并且与n互质的数的个数 f(n)=n(1?1p1)(1?1p2)-(1?1pk)(pi为n的质因子) 代码 C++ 单个处理 int eulerPhi(int n) { int m = (int)sqrt(n+0.5); in ans = n; for (int i = 2; i <= m; i++) { if (n % i == 0) { ans = ans / i * (i-1); while (n%i==0) n /= i; } } if (n > 1)

POJ 2478 Farey Sequence( 欧拉函数 + 法雷数列 )

POJ 2478 Farey Sequence ( 欧拉函数 + 法雷数列 ) #include <cstdio> #include <cstring> using namespace std; #define MAXN 1000005 typedef long long LL; int vis[ MAXN ], prime[ MAXN ], cnt, n; LL phi[ MAXN ]; void get_phi_prime( int N ) { phi[1] = 1; cnt

【BZOJ4173】数学 欧拉函数神题

[BZOJ4173]数学 Description Input 输入文件的第一行输入两个正整数 . Output 如题 Sample Input 5 6 Sample Output 240 HINT N,M<=10^15 题解:STEP 1: 这步还是很容易的吧~毕竟原来的式子不太舒服.但是注意,最后一个式子的取值只能为0或1,所以就变成了. STEP 2: 这步倒是难理解一些,但是考虑:我们将这三个等式都算出来,如果满足了左边那个条件,那么这三个等式加起来为1,对答案的贡献正好为$\varphi

NOIP模拟:切蛋糕(数学欧拉函数)

题目描述  BG 有一块细长的蛋糕,长度为 n. 有一些人要来 BG 家里吃蛋糕, BG 把蛋糕切成了若干块(整数长度),然后分给这些人. 为了公平,每个人得到的蛋糕长度和必须相等,且必须是连续的一段. 但是, BG 并不知道要有多少人来. 他只知道, 来的人数为n的约数,且小于n. 显然把蛋糕平均分成 n 块一定能满足要求.但是, BG 想要分出的块数尽量少.现在 BG 想知道,他要把蛋糕分成至少多少块,才能使得不管多少人来都能满足要求. 输入格式 输入文件名为 cake.in. 输入共一个整

【BZOJ-4173】数学 欧拉函数 + 关于余数的变换

4173: 数学 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 306  Solved: 163[Submit][Status][Discuss] Description Input 输入文件的第一行输入两个正整数 . Output 如题 Sample Input 5 6 Sample Output 240 HINT N,M<=10^15 Source Solution 数论好题,开始无从下手,推导后感觉新姿势++ 题目大意:求$\varphi(

POJ 2478 Farey Sequence 筛选法求欧拉函数

题目来源:POJ 2478 Farey Sequence 题意:输入n 求 phi(2)+phi(3)+phi(4)+...+phi(n) 思路:用类似筛法的方式计算phi(1), phi(2), ..., phi(n) 再求前缀和 #include <cstdio> #include <cstring> #include <cmath> //欧拉phi函数 const int maxn = 1000010; typedef long long LL; int eule

poj 2478 Farey Sequence(基于素数筛法求欧拉函数)

http://poj.org/problem?id=2478 求欧拉函数的模板. 初涉欧拉函数,先学一学它基本的性质. 1.欧拉函数是求小于n且和n互质(包括1)的正整数的个数.记为φ(n). 2.欧拉定理:若a与n互质,那么有a^φ(n) ≡ 1(mod n),经常用于求幂的模. 3.若p是一个质数,那么φ(p) = p-1,注意φ(1) = 1. 4.欧拉函数是积性函数: 若m与n互质,那么φ(nm) = φ(n) * φ(m). 若n = p^k且p为质数,那么φ(n) = p^k - p

poj-2478 Farey Sequence(dp,欧拉函数)

题目链接: Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14230   Accepted: 5624 Description The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd

poj 2478 Farey Sequence(欧拉函数)

Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13204   Accepted: 5181 Description The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b)