Mahout 机器学习的基本原理

Mahout和Hadoop:机器学习的基本原理

  这可能是现在收益最高,也是最受欢迎的一项技术之一。毫无疑问——作为开发人员,机器学习是一个能够大展身手的舞台。  计算技术通常用来分析数据,而理解数据则依赖于机器学习。多年来,对于大多数开发者来说,机器学习却是非常遥远、一直是难以企及的。

  图1:机器学习的构成

  机器学习是简单数据检索与存储的合理扩展。通过开发各种组件,使计算机更加智能学习和发生行为。

  机器学习使得挖掘历史数据和预测未来趋势成为可能。你可能还没意识到,但的确已经在使用机器学习,并受益颇多。与机器学习有关的例子很多,如搜索引擎产生结果、在线推荐、广告投放、欺诈检测以及垃圾邮件过滤等。

  机器学习依赖数据进行决策。直觉虽然重要,但却也很难超越经验数据。

  机器学习的各个方面

  一旦你开始深入探索机器学习,你会遇到以下几个问题:

  1. 有监督与无监督的学习

  2. 分类

  3. 马尔科夫模型、贝叶斯网络等

  Mahout和hadoop

  Apache Mahout项目的目的是建立一个可扩展的机器学习库。

  大数据分析与hadoop之间存在一定程度的重叠

  与Hadoop一起,你可以免费获得整个机器学习开源项目。更多内容参见:

  http://mahout.apache.org/

  Mahout内置聚类、分类以及协同过滤等算法。除此之外还有:

  1. 基于矩阵分解的推荐系统

  2. K-均值,模糊k-均值聚类算法

  3. 隐含狄利克雷分配算法

  4. 奇异值分解

  5. 逻辑回归分类器

  6. (互补)朴素贝叶斯分类器

  7. 随机森林分类器

  我去过加利福尼亚大学伯克利分校,发现他们有很多不错的课程。

  我希望能有更多的时间。我认真考虑过,决定开始参加MIT在线课程,地址如下:

  http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/index.htm

  Azure是民主化的机器学习

  机器学习曾经需要复杂的软件与高端的计算机,以及数据科学家。。而对于现在的机器学习,即预测分析来讲,所需要的是一个全管理的云服务。

  欢迎使用ML Studio

  通过使用拖拽(drag-and-drop)与一些数据流图就可以进行一些实验,就如写代码一般利用起高大上的算法。

  数据科学家用R编写代码

  对于统计与数据挖掘的来说,R是一个很受欢迎的开源项目。好消息是R能够很容易的集成到ML Studio中。我有很多朋友在使用机器学习的功能语言,如F#。但是很显然的,R在此领域仍占统治地位。

  数据挖掘的测验与调查显示,近年来R受欢迎的程度逐渐增强。R是由新泽西的Auckland大学的Ross Ihaka 与Robert Gentleman发明的,目前由R核心开发组(R Development Core Team)负责研发,其中Chambers也是开发成员之一。R的命名主要是根据前两个R作者名字的首字母。R是一个GNU项目,主要是用C语言与 Fortran写的。

  数据分析

  以下框架提供了理解机器学习预测的方法。总的来说就是当涉及到如何使用有限的资源,为增加收益或限制成本提供决策支持。包括预测消费模型、优化供应链等。

  如何进行数据分析

  理解机器学习的最好方法就是将分析分解为3个问题:

  1. 发生了什么?

  a) 从历史角度去看

  2. 将发生什么?

  a) 预测未来

  3. 下一步应该怎么做?

  a) 规范与指引

  分析过程中大家扮演什么角色

  1. 信息工作者

  a) 通常使用自助服务工具Power BI:Office 365的Power BI是一种自我服务的事务智能解决途径,能够通过BI Excel 与Office 365给信息工作者提供数据分析与鉴别数据深层事务预测可视化的能力。

  2. IT专家

  a) 涉及数据转换、数据仓库、创建数据分析立方体及数据建模

  3. 数据科学家

  a) 深层次的技术与技能,包括编码、数学、统计以及概率

  b) 能够通过一系列技术将概率用于预测(如未来18小时内价格上涨的概率为42%)

  c) 如蒙特卡罗(Monte Carlo)模拟,模型参数化

  d) 数据科学家应具备的素质

  i. 领域知识

  ii. 对于科学方法的清晰理解:目标、假设、验证、透明度

  iii. 擅长数学与统计学

  iv. 求知欲与极强的思考能力

  v. 图形化描述与沟通能力

  vi. 高级计算与数据管理能力

  学术背景

  如果你想进入学校,通过学习成为一个数据科学家,可选择的课程如下:

  1. 应用数学

  2. 计算机科学

  3. 经济学

  4. 统计学

  5. 工程学

  从数据科学中受益的行业包括:

  1. 金融服务业

  2. 电信业

  3. 信息技术

  4. 制造业

  5. 公共事业

  6. 公共卫生

  7. 市场

时间: 2024-10-05 05:50:07

Mahout 机器学习的基本原理的相关文章

Mahout机器学习平台之聚类算法详细剖析(含实例分析)

第一部分: 学习Mahout必须要知道的资料查找技能: 学会查官方帮助文档: 解压用于安装文件(mahout-distribution-0.6.tar.gz),找到如下位置,我将该文件解压到win7的G盘mahout文件夹下,路径如下所示: G:\mahout\mahout-distribution-0.6\docs 学会查源代码的注释文档: 方案一:用maven创建一个mahout的开发环境(我用的是win7,eclipse作为集成开发环境,之后在Maven Dependencies中找到相应

机器学习——朴素贝叶斯分类器

假设现在要构建一个网络图书馆,我们可以给新进来的书贴上若干个标签,没有机器学习算法的情况下,我们需要给这些书手动分类,是计算机类的呀,还是非计算机类的呀,是小说类的呀,还是非小说类的云云. 那么,我们可以通过让程序自己学习如何通过一本书上的若干标签来进行图书类别的区分,这样就可以节省很多人力,这也是机器学习的魅力体现. 机器学习的基本原理是通过开发者给出这个程序一个学习集进行学习,再通过用户给的用户数据集进行学习的过程,机器学习包含很多的算法,当然,有大量数据的前提下,机器学习就和统计学密不可分

机器学习实践 测试驱动的开发方法——互动出版网

这篇是计算机类的优质预售推荐>>>><机器学习实践 测试驱动的开发方法> 用测试驱动方法开发出可靠.稳定的机器学习算法. 编辑推荐 本书介绍在开发机器学习算法时如何运用测试驱动的方法,捕捉可能扰乱正常分析的错误.这本实践指南从测试驱动开发和机器学习的基本原理讲起,展示了如何将测试驱动开发运用于若干机器学习算法,包括朴素贝叶斯分类器和神经网络. 任何机器学习算法都有一些传统的测试方法,但它们通常都不会考虑编码中的人为错误.借助测试驱动的开发方法,你便不会像其他研究者那样盲

分享《机器学习与应用》PDF+雷明+资料学习

<机器学习与应用>是机器学习和深度学习领域的入门与提高教材,系统.深入地讲述机器学习与深度学习的主流方法与理论,并紧密结合工程实践与应用.下载:https://pan.baidu.com/s/1Yaxt7vVeCZF1uzobz8Fdgw<机器学习与应用>高清PDF,600页,带书签目录,文字可以复制. <机器学习与应用>由21 章组成,共分为三大部分.第1 - 3 章为第一部分,介绍机器学习的基本原理.所需的数学知识(包括微积分.线性代数.概率论和最优化方法), 以及

蜡炬教育:如何处理机器学习中大型数据的加载问题?

原标题:蜡炬教育:如何处理机器学习中大型数据的加载问题? 蜡炬教育老师表示,在处理机器学习算法时,经常会因为数据库太大而导致无法放入内存中,而遇到这样几个问题:当运行数据集算法而导致崩溃时如何解决?当需要处理大容量数据文件时该如何加载?如何方便快捷的解决内存不足的问题? 针对以上问题,蜡炬教育老师给出7个建议: 1.分配更多内存某些ML工具或数据库默认内存配置不合理,可以看看是否可以手动分配. 2.使用较小样本确认是否需要处理所有数据?在对最终数据拟合前,使用随机抽取数据样本这个示例即可. 3.

课程路线

---恢复内容开始--- 云计算&大数据实战课程列表 first.课程说明: 本系列课程适合有一点编程基础的人员学习(比如java,python,c/c++),最好是java编程人员,特别是从事过j2ee开发的人员.学习完本套课程,可以帮助你成为大型项目架构师,特别是数据量大,并发量高的大型项目架构师,当然也能很大程度上提高你的薪资待遇. second.课程路线 third.Linux大纲 这章是基础课程,帮大家进入大数据领域打好Linux基础,以便更好地学习Hadoop,NoSQL,Oracl

大数据课程学习流程

第一阶段 Java编程基础→oracle/mysql→sql优化→jdbc 第二阶段 JavaScript基础→JavaScript深入→jQuery→jquery easyui→bootstrap 第三阶段 Servlet/jsp→ajax→xml→svn→maven实战项目一 第四阶段 Struts2→hibernate→spring/spring mvc→项目实战二→web serviceshiro→mybatis→项目实战三 第五阶段linux+搜索+hadoop体系 Linux基础→s

大数据,云计算 核心体系

第一阶段:linux+搜索+hadoop体系 Linux大纲     这章是基础课程,帮大家进入大数据领域打好Linux基础,以便更好地学习Hadoop,hbase,NoSQL,Spark,Storm,docker,kvm,openstack等众多课程.因为企业中无一例外的是使用Linux来搭建或部署项目. 1) Linux的介绍,Linux的安装:VMware Workstation虚拟软件安装过程.CentOS虚拟机安装过程 2) 了解机架服务器,采用真实机架服务器部署linux 3) Li

大数据学习路径

大数据学习路径我vx ①⑤零零③④③⑥⑨③① 备注 A 更多大数据第一阶段linux+搜索+hadoop体系 Linux基础→shell编程→高并发架构→lucene,solr搜索→hadoop体系→HDFS→mapreduce→hbase→zookeeper→hive→flume→sqoop→项目实战一 第二阶段机器学习 R语言→mahout→项目实战二 第三阶段storm流式计算 kafka→storm→redis→项目实战三 第四阶段spark内存计算 scala编程→spark core