洛谷——P1290 欧几里德的游戏

P1290 欧几里德的游戏

题目描述

欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的。给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0。然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作……直到一个人得到了0,他就取得了胜利。下面是他们用(25,7)两个数游戏的过程:

Start:25 7

Stan:11 7

Ollie:4 7

Stan:4 3

Ollie:1 3

Stan:1 0

Stan赢得了游戏的胜利。

现在,假设他们完美地操作,谁会取得胜利呢?

输入输出格式

输入格式:

第一行为测试数据的组数C。下面有C行,每行为一组数据,包含两个正整数M, N。(M, N不超过长整型。)

输出格式:

对每组输入数据输出一行,如果Stan胜利,则输出“Stan wins”;否则输出“Ollie wins”

输入输出样例

输入样例#1:

2
25 7
24 15

输出样例#1:

Stan wins
Ollie wins

1、设m,n为输入数据且m>n,第一个满足条件m-n>n的步骤所对应的人为胜利者

2、m%n==0时的步骤所对应的人为胜利者。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
int n,x,y,ans;
int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1; ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘; ch=getchar();}
    return x*f;
}
void f(int x,int y)
{
    while(1)
    {
        if(x>y) swap(x,y);
        if(y%x==0) break;
        if(y-x>x) break;
        y-=x;
        ans++;
    }
}
int main()
{
    n=read();
    while(n--)
    {
        ans=0;
        x=read(),y=read();
        f(x,y);
        if(ans%2==0) printf("Stan wins\n");
        else printf("Ollie wins\n");
    }
    return 0;
}
时间: 2024-11-08 19:19:56

洛谷——P1290 欧几里德的游戏的相关文章

洛谷P1290 欧几里德的游戏 数学 博弈论 模拟

洛谷P1290 欧几里德的游戏 数学 博弈论 模拟 这道题我们因为当 x 大于 y 时 你也只能在合法范围 内取 1 个 y 两个 y 也就是说 能取的y大于等于2时,则你本质不同的取法共有两种,此时你必定获胜,因为本质不同,而在最优策略下,则说明胜利者也不同,也就是说这时候你可以决定自己的输赢 ,我们称这种必胜局为 v 局 2.但是如果 v 局后面还有v 局怎么办,这个不必担心,因为先拿到 v局的人,有两种本质不同的取法,也就是说 他可以控制自己下次必定拿到 v 局,这样就 能确保胜利了 所以

洛谷 1290 欧几里德的游戏

https://www.luogu.org/problem/show?pid=1290 题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0.然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作--直到一个人得到了0,他就取得了胜利.下面是他们用(25,7)两个数游戏的过程: Start:25 7 Stan:11 7

洛谷P1118 数字三角形游戏

洛谷1118 数字三角形游戏 题目描述 有这么一个游戏: 写出一个1-N的排列a[i],然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少1,直到只剩下一个数字位置.下面是一个例子:     3   1   2   4       4   3   6         7   9          16 最后得到16这样一个数字. 现在想要倒着玩这样一个游戏,如果知道N,知道最后得到的数字的大小sum,请你求出最初序列a[i],为1-N的一个

洛谷1288 取数游戏II 博弈论

洛谷1288 取数游戏II 博弈论 最优策略 一定是你一步把值走完,然后我再走完,这样不给别人留后路 然后这样走 只要自己从左走 或者从右走其中有一个有奇数步可走,则说明是必胜局 如果都是只能走偶数步的,就是必败局 . 另一个题解 首先,对于一条链a1,a2,a3,a4......0 如果是偶数条边,那么现手一定赢,因为他每一次都只用把后面一条取完,例如 5 4 3 6 5 0 先手取完5,后手没法回到前一个位置,而无论接下来后手去多少,先手继续取完3,再然后取完5,后手没办法再去,先手赢.就这

【bzoj3240 &amp;&amp; 洛谷P1397】矩阵游戏[NOI2013](矩阵乘法+卡常)

题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3240 这道题其实有普通快速幂+费马小定理的解法……然而我太弱了,一开始只想到了矩阵乘法的方法. 首先定义两个矩阵: $ A_{1} = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} $ $ A_{2} = \begin{bmatrix} c & d \\ 0 & 1 \end{bmatrix} $ 于是我们就可以得到这样

AC日记——欧几里得的游戏 洛谷 P1290

题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0.然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作……直到一个人得到了0,他就取得了胜利.下面是他们用(25,7)两个数游戏的过程: Start:25 7 Stan:11 7 Ollie:4 7 Stan:4 3 Ollie:1 3 Stan:1 0 Stan赢得

P1290 欧几里德的游戏

题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0.然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作……直到一个人得到了0,他就取得了胜利.下面是他们用(25,7)两个数游戏的过程: Start:25 7 Stan:11 7 Ollie:4 7 Stan:4 3 Ollie:1 3 Stan:1 0 Stan赢得

并查集 洛谷P1640 [SCOI2010]连续攻击游戏

[SCOI2010]连续攻击游戏 题目描述 lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备时,他只能使用该装备的某一个属性.并且每种装备最多只能使用一次.游戏进行到最后,lxhgww遇到了终极boss,这个终极boss很奇怪,攻击他的装备所使用的属性值必须从1开始连续递增地攻击,才能对boss产生伤害.也就是说一开始的时候,lxhgww只能使用某个属性值为1的装备攻击boss,然后只能使用某个属性值

洛谷-小鱼的数字游戏-数组

题目描述 Description 小鱼最近被要求参加一个数字游戏,要求它把看到的一串数字(长度不一定,以0结束,最多不超过100个),记住了然后反着念出来(表示结束的数字0就不要念出来了).这对小鱼的那点记忆力来说实在是太难了,你也不想想小鱼的整个脑袋才多大,其中一部分还是好吃的肉!所以请你帮小鱼编程解决这个问题. 输入输出格式 Input/output 输入格式:一行内输入一串整数,以0结束,以空格间隔.输出格式:一行内倒着输出这一串整数,以空格间隔. 输入输出样例 Sample input/