再谈算法复杂度

算法复杂度分为时间复杂度和空间复杂度。

时间复杂度用于度量算法运行的时间长短;而空间复杂度则是用于度量算法所需存储空间的大小。

时间复杂度

1.时间频度

  一个算法运行所耗费的时间,从理论上是不能算出来的,必须上机运行測试才干知道。但我们不可能也没有必要对每一个算法都上机測试,仅仅需知道哪个算法花费的时间多。哪个算法花费的时间少就能够了。

而且一个算法花费的时间与算法中语句的运行次数成正比例。哪个算法中语句运行次数多,它花费时间就多。一个算法中的语句运行次数称为语句频度或时间频度。记为T(n)。

2.计算方法

  1. 普通情况下,算法的基本操作反复运行的次数是模块n的某一个函数f(n)。因此,算法的时间复杂度记做:T(n)=O(f(n))

  分析:随着模块n的增大,算法运行的时间的增长率和f(n)的增长率成正比。所以f(n)越小,算法的时间复杂度越低。算法的效率越高。

  2. 在计算时间复杂度的时候,先找出算法的基本操作,然后依据对应的各语句确定它的运行次数,再找出T(n)的同数量级(它的同数量级有下面:1。Log2n 。n ,nLog2n ,n的平方,n的三次方,2的n次方,n!

),找出后。f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))

  例:算法:

  for(i=1;i<=n;++i)

  {

  for(j=1;j<=n;++j)

  {

  c[ i ][ j ]=0; //该步骤属于基本操作运行次数:n的平方 次

  for(k=1;k<=n;++k)

  c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 运行次数:n的三次方 次

  }

  }

  则有 T(n)= n的平方+n的三次方,依据上面括号中的同数量级。我们能够确定 n的三次方 为T(n)的同数量级

  则有f(n)= n的三次方,然后依据T(n)/f(n)求极限可得到常数c

  则该算法的 时间复杂度:T(n)=O(n的三次方)

3.分类

  按数量级递增排列。常见的时间复杂度有:

  常数阶O(1),对数阶O(log2n),线性阶O(n),

  线性对数阶O(nlog2n),平方阶O(n2)。立方阶O(n3),…,

  k次方阶O(nk), 指数阶O(2n) 。

随着问题规模n的不断增大,上述时间复杂度不断增大,算法的运行效率越低。

空间复杂度

  与时间复杂度类似,空间复杂度是指算法在计算机内运行时所需存储空间的度量。记作:

  S(n)=O(f(n))

  我们一般所讨论的是除正常占用内存开销外的辅助存储单元规模。

算法的时间复杂度(计算实例)

算法的时间复杂度

定义:假设一个问题的规模是n,解这一问题的某一算法所须要的时间为T(n)。它是n的某一函数 T(n)称为这一算法的“时间复杂性”。

当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

我们经常使用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。

大O表示仅仅是说有上界。由定义假设f(n)=O(n),那显然成立f(n)=O(n^2)。它给你一个上界,但并非上确界。但人们在表示的时候一般都习惯表示前者。

此外,一个问题本身也有它的复杂性。假设某个算法的复杂性到达了这个问题复杂性的下界。那就称这种算法是最佳算法。

“大O记法”:在这样的描写叙述中使用的基本參数是 n,即问题实例的规模,把复杂性或执行时间表达为n的函数。这里的“O”表示量级 (order),比方说“二分检索是 O(logn)的”,也就是说它须要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,执行时间至多将以正比于 f(n)的速度增长。

这样的渐进预计对算法的理论分析和大致比較是很有价值的,但在实践中细节也可能造成差异。比如。一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法执行得更快。

当然,随着n足够大以后,具有较慢上升函数的算法必定工作得更快。

O(1)

Temp=i;i=j;j=temp;

以上三条单个语句的频度均为1。该程序段的运行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶。记作T(n)=O(1)。

假设算法的运行时间不随着问题规模n的添加而增长。即使算法中有上千条语句。其运行时间也只是是一个较大的常数。

此类算法的时间复杂度是O(1)。

O(n^2)

2.1. 交换i和j的内容

sum=0。 (一次)

for(i=1;i<=n;i++) (n次)

for(j=1;j<=n;j++) (n^2次)

sum++; (n^2次)

解:T(n)=2n^2+n+1 =O(n^2)

2.2.

for (i=1;i<n;i++)

{

y=y+1; ①

for (j=0;j<=(2*n);j++)

x++; ②

}

解:语句1的频度是n-1

语句2的频度是(n-1)*(2n+1)=2n^2-n-1

f(n)=2n^2-n-1+(n-1)=2n^2-2

该程序的时间复杂度T(n)=O(n^2).

O(n)

2.3.

a=0;

b=1; ①

for (i=1;i<=n;i++) ②

{

s=a+b;    ③

b=a;     ④

a=s;     ⑤

}

解:语句1的频度:2,

语句2的频度: n,

语句3的频度: n-1,

语句4的频度:n-1,

语句5的频度:n-1,

T(n)=2+n+3(n-1)=4n-1=O(n).

O(log2n )

2.4.

i=1; ①

while (i<=n)

i=i*2; ②

解: 语句1的频度是1,

设语句2的频度是f(n), 则:2^f(n)<=n;f(n)<=log2n

取最大值f(n)= log2n,

T(n)=O(log2n )

O(n^3)

2.5.

for(i=0;i<n;i++)

{

for(j=0;j<i;j++)

{

for(k=0;k<j;k++)

x=x+2;

}

}

解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 能够取 0,1,…,m-1 , 所以这里最内循环共进行了0+1+…+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+…+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).

我们还应该区分算法的最坏情况的行为和期望行为。如高速排序的最坏情况执行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都细致地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到差点儿等于 0。

在实际中,精心实现的高速排序一般都能以 (O(nlogn)时间执行。

以下是一些经常使用的记法:

訪问数组中的元素是常数时间操作,或说O(1)操作。一个算法如 果能在每一个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。用strcmp比較两个具有n个字符的串须要O(n)时间。常规的矩阵乘算法是O(n^3)。由于算出每一个元素都须要将n对 元素相乘并加到一起,全部元素的个数是n^2。

指数时间算法通常来源于须要求出全部可能结果。比如,n个元 素的集合共同拥有2n个子集,所以要求出全部子集的算法将是O(2n)的。指数算法一般说来是太复杂了,除非n的值很小。由于,在 这个问题中添加一个元素就导致执行时间加倍。不幸的是。确实有很多问题 (如著名的“巡回售货员问题” ),到眼下为止找到的算法都是指数的。假设我们真的遇到这样的情况。通常应该用寻找近似最佳结果的算法替代之。

算法复杂度的渐近表示法

一个算法的时间复杂度,指算法执行的时间。

如果数据输入规模是n,算法的复杂度能够表示为f(n)的函数

一  大O记号

如果f(n)和g(n)的定义域是非负整数,存在两个正整数c和n0,使得n>n0的时候,f(n)≤c*g(n),则f(n)=O(g(n))。可见O(g(n))能够表示算法执行时间的上界。O(g(n))表示的函数集合的函数是阶数不超过g(n)的函数。

比如:f(n)=2*n+2=O(n)

证明:当n>3的时候,2*n +2<3n,所以可选n0=3,c=3,则n>n0的时候。f(n)<c*(n)。所以f(n)=O(n)。

如今再证明f(n)=2*n+2=O(n^2)

证明:当n>2的时候,2*n+2<2*n^2,所以可选n0=2,c=2,则n>n0的时候,f(n)<c*(n^2)。所以f(n)=O(n^2)。

同理可证f(n)=O(n^a),a>1

二  ?记号

?记号与大O记号相反,他能够表示算法执行时间的下界。

?(g(n))表示的函数集合的函数是全部阶数超过g(n)的函数。

比如:f(n)=2*n^2+3*n+2=?(n^2)

证明:当n>4的时候,2*n^2+3*n+2>n^2,所以可选n0=4,c=1,则n>n0的时候,f(n)>c*(n^2),所以f(n)=?(n^2)。

同理可证f(n)=?(n),f(n)=?(1)

三  Θ记号

Θ记号介于大O记号和?记号之间。他表示,存在正常数c1,c2,n0,当n>n0的时候,c1*g(n)≤f(n)≤c2*g(n)。则f(n)=Θ(g(n))。他表示全部阶数与g(n)同样的函数集合。

四  小o记号

f(n)=o(g(n))当且仅当f(n)=O(g(n))且f(n)≠?(g(n))。

也就是说小o记号能够表示时间复杂度的上界。可是一定不等于下界。

五  样例

如果f(n)=2n^2+3n+5,

则f(n)=O(n^2)或者f(n) = O(n^3)或者f(n)=O(n^4)或者……

f(n)=?(n^2)或者f(n)=?(n)或者f(n)=?(1)

f(n)=Θ(n^2)

f(n) = o(n^3)或者f(n)=o(n^4)或者f(n)=o(n^5)或者……

注:n^2表示n的平方。以此类推。

常见排序算法时空复杂度


排序法

最差时间分析 平均时间复杂度 稳定度 空间复杂度
冒泡排序 O(n2) O(n2) 稳定 O(1)
高速排序 O(n2) O(n*log2n) 不稳定 O(log2n)~O(n)
选择排序 O(n2) O(n2) 稳定 O(1)
二叉树排序 O(n2) O(n*log2n) 不一顶 O(n)

插入排序

O(n2) O(n2) 稳定 O(1)
堆排序 O(n*log2n) O(n*log2n) 不稳定 O(1)
希尔排序 O O 不稳定 O(1)
时间: 2024-11-03 10:51:45

再谈算法复杂度的相关文章

再谈排序与图论算法

排序 1.主存能放下的数据进行排序称为内部排序,反之称为外部排序(磁盘上).2.任何进行交换相邻元素进行排序的算法均需要O(N2)的复杂度,任何进行比较的排序算法至少需要O(N*log(N))的算法复杂度. 3.堆排序和归并排序的时间复杂度平均和最坏均为O(N*log(N)) 4.Java中执行一次对象比较是比较昂贵的,移动则是相对节省的,因此归并排序是java的默认泛型排序算法.C++中默认的是快速排序,比较耗费小:快排对于基本类型均具有最快速度.快速排序选取枢纽元的时候采用三数取中,切勿采用

浅谈算法和数据结构

: 一 栈和队列 http://www.cnblogs.com/yangecnu/p/Introduction-Stack-and-Queue.html 最近晚上在家里看Algorithems,4th Edition,我买的英文版,觉得这本书写的比较浅显易懂,而且“图码并茂”,趁着这次机会打算好好学习做做笔记,这样也会印象深刻,这也是写这一系列文章的原因.另外普林斯顿大学在Coursera 上也有这本书同步的公开课,还有另外一门算法分析课,这门课程的作者也是这本书的作者,两门课都挺不错的. 计算

浅谈算法和数据结构: 十 平衡查找树之B树

转载自 http://www.cnblogs.com/yangecnu/p/3632027.html 浅谈算法和数据结构: 十 平衡查找树之B树 前面讲解了平衡查找树中的2-3树以及其实现红黑树.2-3树种,一个节点最多有2个key,而红黑树则使用染色的方式来标识这两个key. 维基百科对B树的定义为“在计算机科学中,B树(B-tree)是一种树状数据结构,它能够存储数据.对其进行排序并允许以O(log n)的时间复杂度运行进行查找.顺序读取.插入和删除的数据结构.B树,概括来说是一个节点可以拥

浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树

http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的时候具有较高的灵活性,而有序数组在查找时具有较高的效率,本文介绍的二叉查找树(Binary Search Tree,BST)这一数据结构综合了以上两种数据结构的优点. 二叉查找树具有很高的灵活性,对其优化可以生成平衡二叉树,红黑树等高效的查找和插入数据结构,后文会一一介绍. 一 定义 二叉查找树(B

再谈协方差矩阵之主成分分析

再谈协方差矩阵之主成分分析 自从上次谈了协方差矩阵之后,感觉写这种科普性文章还不错,那我就再谈一把协方差矩阵吧.上次那篇文章在理论层次介绍了下协方差矩阵,没准很多人觉得这东西用处不大,其实协方差矩阵在好多学科里都有很重要的作用,比如多维的正态分布,再比如今天我们今天的主角——主成分分析(Principal Component Analysis,简称PCA).结合PCA相信能对协方差矩阵有个更深入的认识~ PCA的缘起 PCA大概是198x年提出来的吧,简单的说,它是一种通用的降维工具.在我们处理

C++ Primer 学习笔记_73_面向对象编程 --再谈文本查询示例

面向对象编程 --再谈文本查询示例 引言: 扩展第10.6节的文本查询应用程序,使我们的系统可以支持更复杂的查询. 为了说明问题,将用下面的简单小说来运行查询: Alice Emma has long flowing red hair. Her Daddy says when the wind blows through her hair, it looks almost alive, like a fiery bird in flight. A beautiful fiery bird, he

浅谈算法和数据结构(1):栈和队列

浅谈算法和数据结构(1):栈和队列 2014/11/03 ·  IT技术                                         · 2 评论                                      ·  数据结构, 栈, 算法, 队列 分享到: 60 SegmentFault D-Day 2015 北京:iOS 站 JDBC之“对岸的女孩走过来” CSS深入理解之relative HTML5+CSS3实现春节贺卡 原文出处: 寒江独钓   欢迎分享原创

浅谈算法和数据结构: 四 快速排序

原文:浅谈算法和数据结构: 四 快速排序 上篇文章介绍了时间复杂度为O(nlgn)的合并排序,本篇文章介绍时间复杂度同样为O(nlgn)但是排序速度比合并排序更快的快速排序(Quick Sort). 快速排序是20世纪科技领域的十大算法之一 ,他由C. A. R. Hoare于1960年提出的一种划分交换排序. 快速排序也是一种采用分治法解决问题的一个典型应用.在很多编程语言中,对数组,列表进行的非稳定排序在内部实现中都使用的是快速排序.而且快速排序在面试中经常会遇到. 本文首先介绍快速排序的思

浅谈算法和数据结构: 九 平衡查找树之红黑树

原文:浅谈算法和数据结构: 九 平衡查找树之红黑树 前面一篇文章介绍了2-3查找树,可以看到,2-3查找树能保证在插入元素之后能保持树的平衡状态,最坏情况下即所有的子节点都是2-node,树的高度为lgN,从而保证了最坏情况下的时间复杂度.但是2-3树实现起来比较复杂,本文介绍一种简单实现2-3树的数据结构,即红黑树(Red-Black Tree) 定义 红黑树的主要是像是对2-3查找树进行编码,尤其是对2-3查找树中的3-nodes节点添加额外的信息.红黑树中将节点之间的链接分为两种不同类型,