OpenCV Tutorials —— Discovering the human retina and its use for image processing

将关于人类视网膜的发现应用于图像处理 ~

  • spectral whitening 频谱白化 that has 3 important effects: high spatio-temporal frequency signals canceling (noise), mid-frequencies details enhancement and low frequencies luminance energy reduction. This all in one property directly allows visual signals cleaning of classical undesired distortions introduced by image sensors and input luminance range.
  • local logarithmic luminance 亮度 compression allows details to be enhanced even in low light conditions.
  • decorrelation 去相关 of the details information (Parvocellular output channel) and transient information (events, motion made available at the Magnocellular output channel).

In the figure below, the OpenEXR image sample CrissyField.exr, a High Dynamic Range image is shown. In order to make it visible on this web-page, the original input image is linearly rescaled to the classical image luminance range [0-255] and is converted to 8bit/channel format. Such strong conversion hides many details because of too strong local contrasts. Furthermore, noise energy is also strong and pollutes visual information.

In the following image, as your retina does, local luminance adaptation, spatial noise removal and spectral whitening work together and transmit accurate information on lower range 8bit data channels. On this picture, noise in significantly removed, local details hidden by strong luminance contrasts are enhanced. Output image keeps its naturalness and visual content is enhanced.

As an illustration, we apply in the following the retina model on a webcam video stream of a dark visual scene. In this visual scene, captured in an amphitheater of the university, some students are moving while talking to the teacher.

In this video sequence, because of the dark ambiance, signal to noise ratio is low and color artifacts are present on visual features edges because of the low quality image capture tool-chain.

Below is shown the retina foveal vision applied on the entire image. In the used retina configuration, global luminance is preserved and local contrasts are enhanced. Also, signal to noise ratio is improved : since high frequency spatio-temporal noise is reduced, enhanced details are not corrupted by any enhanced noise.

Below is the output of the Magnocellular output of the retina model. Its signals are strong where transient events occur. Here, a student is moving at the bottom of the image thus generating high energy. The remaining of the image is static however, it is corrupted by a strong noise. Here, the retina filters out most of the noise thus generating low false motion area ‘alarms’. This channel can be used as a transient/moving areas detector : it would provide relevant information for a low cost segmentation tool that would highlight areas in which an event is occurring.

时间: 2024-11-05 16:18:02

OpenCV Tutorials —— Discovering the human retina and its use for image processing的相关文章

学习opencv tutorials

1.opencv里头动态库和静态库的区别 lib是动态库,staticlib是静态库. 这是opencv tutorials中对动态库和静态库的说明.动态库是在runtime时候才load的库文件.而静态库文件会在你build的时候build-in inside your exe file.优点是可以避免误删,缺点是应用程序变大,加载时间也会变长. 2.  Visual Studio中solution和project的关系 在VS中,一个solution中可以包含多个project. 3.  两

OpenCV Tutorials —— Hough Line Transform

霍夫直线变换 -- 用于检测图像中的直线 利用图像空间和Hough参数空间的点--直线对偶性,把图像空间中的检测问题转换到参数空间,通过在参数空间进行简单的累加统计,然后在Hough参数空间中寻找累加器峰值的方法检测直线 Standard and Probabilistic Hough Line Transform OpenCV implements two kind of Hough Line Transforms: The Standard Hough Transform It consis

OpenCV Tutorials —— Feature Matching with FLANN

Extractors of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to easily switch between different algorithms solving the same problem.   DescriptorExtractor::compute Computes the descriptors for a set of keypoints

OpenCV Tutorials —— Creating a video with OpenCV

写video 需要用到 VideoWriter  视频文件可看作一个容器 视频的类型由视频文件的后缀名来指定   Due to this OpenCV for video containers supports only the avi extension, its first version. A direct limitation of this is that you cannot save a video file larger than 2 GB. Furthermore you ca

OpenCV Tutorials —— Image Moments

图像矩 Moments moments(InputArray array, bool binaryImage=false ) Parameters: array – Raster image (single-channel, 8-bit or floating-point 2D array) or an array ( or ) of 2D points (Point or Point2f ). binaryImage – If it is true, all non-zero image pi

OpenCV Tutorials —— Hough Circle Transform

Hough 圆变换 和 Hough 直线变换原理相同,只是参数空间不同 : In the line detection case, a line was defined by two parameters . In the circle case, we need three parameters to define a circle: where define the center position (gree point) and is the radius, which allows us

OpenCV Tutorials —— Sobel Derivatives

图像边缘 -- 像素灰度值变换剧烈的点 You can easily notice that in an edge, the pixel intensity changes in a notorious way. A good way to expresschanges is by using derivatives. A high change in gradient indicates a major change in the image.   To be more graphical,

OpenCV Tutorials —— Making your own linear filters

kernel A kernel is essentially a fixed size array of numerical coefficeints along with an anchor point in that array, which is tipically located at the center. The value of the convolution is calculated in the following way: 1,Place the kernel anchor

OpenCV Tutorials —— Basic Drawing

Point It represents a 2D point, specified by its image coordinates and . We can define it as: Point pt;pt.x = 10;pt.y = 8; or Point pt = Point(10, 8); Scalar Represents a 4-element vector. The type Scalar is widely used in OpenCV for passing pixel va