C++ 模板特化以及Typelist的相关理解

  近日,在学习的过程中第一次接触到了Typelist的相关内容,比如Loki库有一本Modern C++ design的一本书,大概JD搜了一波没有译本,英文版600多R,瞬间从价值上看到了这本书的价值!!这是题外话。这本书十分经典。其内容对于一个C++新手来说需要时间来理解吸收。在这里记录一下自己的理解。日后发现错误会给予更正。如有有人碰巧看到了。欢迎指正。

参考了http://blog.csdn.net/gatieme/article/details/50953564

整篇内容分了三个部分:1.特化  2.Typelist 3.应用的情形

1.在说明Typelist相关内容之前,要先了解一下什么叫模板特化与模板偏特化。

  1.1 模板与特化:

    模板分为函数模板与类模板。函数模板是一种抽象函数的定义,它代表了具有相同结构的一类函数。类模板类似于Stack等封装区分数据类型,是一种更高级的抽象封装

    所谓特化就是讲泛型的东西更加的具体化,比如在某些泛型参数中进行限定,使得不受任何约定的模板参数受到了约束(比如常见的这个大写T),下面的例子中会更具象化的说明个人的一些理解。

    特化的分类:分为函数模板特化和类模板特化,全特化与偏特化

    ①:函数模板特化

      当函数模板需要对某些类型进行限定的时候称之为函数模板特化

    ②:类模板特化

      与上述类似,只是是使用于类

    ③:全特化

      将模板中的参数全部指定为确定的类型,其标志就是应用于完全确定的内容。而不是在编译时去确定具体的应用实例。标志:template<>然后是和末班类型没有关系的类实现或者函数定义。

    ④:偏特化

      模板中的参数没有被全部指定。需要编译器在编译时进行确定。

  1.2 函数模板特化:

    如下代码:

template <class T>
int compare(const T  left,const T  right) {
    std::cout << "test template func" << endl;
    return (left - right);
}

这个函数能够满足一些基本类型的比较需求(int,float,....巴拉巴啦),但是对于字符串的比价这个函数是不能支持的。

因此我们可以对其进行特化处理。

template < >
int compare<const char *>(const char * left,const char * right) {
    std::cout << "function tempate special" << std::endl;
    return strcmp(left,right);
}

//另一种特化方式是如下template < >int compare(const char * left,const char * right) {  std::cout << " in special template <> .." << std::endl;  return strcmp(left,right);}

测试代码:

#include<bits/stdc++.h>

template <class T>
int compare(const T  left,const T  right) {
    std::cout << "test template func" << std::endl;
    return (left - right);
}

template <>
int compare(const char* left, const char* right){
    std::cout <<"in special template..." <<std::endl;
    return strcmp(left, right);
}

int main() {
    std::cout << compare(1, 2) << std::endl;
    const char *left = "abcd";
    const char *right = "accd";
    std::cout << compare(left, right) << std::endl;
    return 0;
}

输出内容

test template func
-1
in special template...
-1

函数的特化,当函数调用发现有特化后的匹配函数的时候,会优先调用特化的函数。而不是通过函数模板进行实例化。

  1.2类模板特化

    与函数模板特化类似,当模板内需要对某些类型进行特别处理时,需要这种处理。这里归纳了一个模板参数的类模板特化的几种类型。

    1.绝对类型

    2.引用,指针类型

    3. 特化为另一个类模板(这个厉害了,我猜的)

  1.2.1 特化为绝对类型 : 直接为某个特定类型做特化,这是一种常见的方式。

    

#include <iostream>
#include <cstring>
#include <cmath>

template <class T>
class Compare {
public :
    static bool IsEqual(const T & lh,const T & rh) {
        std::cout << "uniusall " << std::endl;
        return lh == rh;
    }
};

template<>
class Compare<float> {
public :
    static bool IsEqual(const float & lh,const float & rh) {
        std::cout << "float special class " << std::endl;
        return abs(lh - rh) < 1e-4;
    }
};

int main() {
    Compare<int> comp1;
    std::cout << comp1.IsEqual(2,3) << std::endl;
    Compare<float> comp2;
    std::cout << comp2.IsEqual(1,1) << std::endl;
}

另外我特意要说明的是,如果没有第一段template<class T>的模板声明,直接template<> Class Compare<float>是否可以?

这个是不可以的,编译报错内容是 ‘Compare‘ is not a class template,这个在后边有关typelist内容中也会提出(ps 主要是由在阅读Typelist中的一行代码导致我特意测试了一下这种情况)。

偏特化:

template <class T1,class T2>
class A {};

template <class T1>
class A<T1,int> {};

下面的代码框内容是在另一个博客中提到的另外2中类型,目前还没有使用过。作为记录放在这里

template <class _Iterator>
struct iterator_traits {
  typedef typename _Iterator::iterator_category iterator_category;
  typedef typename _Iterator::value_type        value_type;
  typedef typename _Iterator::difference_type   difference_type;
  typedef typename _Iterator::pointer           pointer;
  typedef typename _Iterator::reference         reference;
};

// specialize for _Tp*
template <class _Tp>
struct iterator_traits<_Tp*> {
  typedef random_access_iterator_tag iterator_category;
  typedef _Tp                         value_type;
  typedef ptrdiff_t                   difference_type;
  typedef _Tp*                        pointer;
  typedef _Tp&                        reference;
};

// specialize for const _Tp*
template <class _Tp>
struct iterator_traits<const _Tp*> {
  typedef random_access_iterator_tag iterator_category;
  typedef _Tp                         value_type;
  typedef ptrdiff_t                   difference_type;
  typedef const _Tp*                  pointer;
  typedef const _Tp&                  reference;
};
// specialize for T*
template<class T>
class Compare<T*>
{
public:
    static bool IsEqual(const T* lh, const T* rh)
    {
        return Compare<T>::IsEqual(*lh, *rh);
    }
};

这种特化其实是不一种绝对的特化,他只是对类型做了某些限定,但仍然保留了莫版型,给我们提供了极大地方便。

在这里,我么不就不需要对int*.float *,double *等等类型分别做特定的特化。这其实是第二种方式的扩展,其实夜视对类型做了某种限定。而不是绝对化为某个具体类型。

如下一段代码

template <class T>
class Compare< vector<T> > {
public :
    static bool IsEqual(const vector<T> &lh,const vector<T> & rh) {
        if (lh.size() != rh.size()) return false;
        else {
            for (int i = 0 ; i < lh.size() ; i++)
                if (lh[i] != rh[i]) return false;
        }
    }
};

上述的代码比较好理解。就省略了

以下是第三种特化为另一个类模板

template <class T1>
struct SpecializedType {
    T1 x1;
    T1 x2;
}

template <class T>
class Compare< SpeciallizedType<T> > {
public :
    static bool IsEqual(const Specialized<T> & lh,const Specialized<T>&rh) {
        return Compare<T>::IsEqual(lh.x1 + lh.x2,rh.x1 + rh.x2);
    }
};

SpecializedType<float> a = {10.0f,10.1f};SpecializedType<float> b = {10.3f,10.4f};bool flag = Compare<SpecializedType<float> >::IsEqual(a,b);

2.关于TypeList,这个是来自于Loki库中的一部分。

基于个人的理解。我分开一段一个一个函数的记录一下。

首先是一些最基本的定义和宏

class NullType {};
template <class T,class U>
struct Typelist {
    typedef H Head;
    typedef U Tail;
}
//通过定义一些宏使得typelist线性化
#define TYPELIST_0() NullType
#define TYPELIST_1(T1) Typelist<T1,TYPELIST_0()>
#define TYPELIST_2(T1,T2) Typelist<T1,TYPELIST_1(T2)>
#define TYPELIST_3(T1,T2,T3) Typelist<T1,TYPELIST_2(T2,T3)>
#define TYPELIST_4(T1,T2,T3,T4) Typelist<T1,TYPELIST_3(T2,T3,T4)>
#define TYPELIST_5(T1,T2,T3,T4,T5) Typelist<T1,TYPELIST_4(T2,T3,T4,T5)>  

Typelist结构里面是2个typedef,看见其内部没有任何数值,他们的实体是空的,不含有任何状态,也未定义任何函数。执行期间Typelists也不带任何数值,他们的存在只是为了携带类别信息,Typelist并未打算被具体化。 另外规定,typelist必须以NullType作为结尾。其可以被视为一个结束符号。具体宏的作用结合下面的例子来说明。

//如何声明使用
typedef TYPELIST_0() TL0;
typedef TYPELIST_3(char,int,double) TL3;
将上面的宏产开后
是如下的形式

typedef NullType TL0;
typedef Typelist<char,Typelist<int,Typelist<double,NullType> > >TL3;

上面这种方法利用了特化中的特化为另一个模板的方法。

针对于上面的展开,可以看下获取长度length的代码

//为了方便解释,我把他们分为3部分.
//第一部分 只有一行
template<class TList>struct Length;
//第二部分
template<>struct Length<NullType> {
    enum { value = 0; }
};
//第三部分
template<class T,class U>
struct Length<Typelist<T,U> > {
    enum { value = 1 + Length<U>::value} ;
};

分开来解释一个我个人的理解:

第一部分:template<class TList>struct Length;

这句话实际上是最困扰我的一句话,首先这句话一定要有。否则的代价是编译不过。

关于这句话的作用个人的理解第一:基于编译是否通过,如果使用全特化,必然要有“前置的模板声明”,否则会报错

                                        第二:首先说明这个获取长度的方法该如何调用。基于前面讲的TL3

std::cout<<Length<TL0>::value<<std::endl;

借助这个调用来解释我个人的理解,在Length中,只有NullType和Typelist<T,U>可以进行匹配,当我们尝试传递Length<int>的时候自然是无法找到匹配, 原因是Length进行特化的时候只能匹配到NullType和Typelist,

由此,这句话既是声明又是一种限定,他告诉编译器什么形式的具象化可以匹配模板。

第二个部分:

  全特化,只有NullType可以匹配,递归调用的终点。很好理解

第三个部分:

  偏特化,结合前面的宏展开,可以看出其递归调用的方式。其使用Typelist来进行特化,需要2个参数。

剩下的代码大体只是逻辑区别:不再赘述,完整代码:(来自http://blog.csdn.net/zhuyingqingfen/article/details/43938713)

#ifndef TYPE_LISTS_H_
#define TYPE_LISTS_H_

#include <iostream>
#include <string>
#include "typetraits.h"

/*
TypeLists 内部没有任何数值(value),他们的实体是空的,不含有任何状态,也未定义任何函数。
执行期间TypeLists也不带任何数值,他们存在的理由只是为了携带型别信息。TypeLists 并未打算被具
现化。因此,当我们说“a TypeListL”,实际指的是一个typelist型别,不是一个typelist 对象。
规定 typelist 必须以NullType(类)结尾,NullType可被视为一个结束符号,类似于c字符串的\0功能,
定义一个只有一个元素的typelist如下:
typedef Typelist<int,NullType> OneTypeOnly.
*/
template<class T,class U>
struct Typelist
{
    typedef T Head;
    typedef U Tail;
};
Class NullType{};
//通过定义宏 将typelist线性化
#define TYPELIST_0() NullType
#define TYPELIST_1(T1) Typelist<T1,TYPELIST_0()>
#define TYPELIST_2(T1,T2) Typelist<T1,TYPELIST_1(T2)>
#define TYPELIST_3(T1,T2,T3) Typelist<T1,TYPELIST_2(T2,T3)>
#define TYPELIST_4(T1,T2,T3,T4) Typelist<T1,TYPELIST_3(T2,T3,T4)>
#define TYPELIST_5(T1,T2,T3,T4,T5) Typelist<T1,TYPELIST_4(T2,T3,T4,T5)>

//计算TypeList长度
//大多数Typelist的操作都是基于递归,递归终止条件通过模板特化实现。
template<class TList>struct Length;
template<>struct Length<NullType>//Length的全特化,即,只匹配NullType。
{
    enum{value = 0};
};
template<class T,class U>
struct Length<Typelist<T,U> >//Length的扁特化,可匹配任何TypeList<T,U>类型,包括U同时也是Typelist的复合情况。
{
    enum{value = 1+Length<U>::value};
};
//2 索引式访问
template <class TList,unsigned int index> struct TypeAt;
template<class Head,class Tail>
struct TypeAt<Typelist<Head,Tail>,0>
{
    typedef Head Result;
};
template<class Head,class Tail,unsigned int i>
struct TypeAt<Typelist<Head,Tail> ,i>
{
    typedef typename TypeAt<Tail,i-1>::Result Result;
};

//类似TypeAt功能,不过TypeAtNonStrict对逾界访问更加宽容。
//比如TypeList的个数是3,那么你不能使用TypeAt<TL3,3>::Result,这样会编译错误。
//但是TypeAtNonStrict<TL3,3,NullType>::Result可以,如果不存在索引为3的type,那么结果是第三个引数即NullType
template <class TList, unsigned int i, typename DefType = NullType>
struct TypeAtNonStrict
{
    typedef DefType Result;
};
template <class T, class U, typename DefType>
struct TypeAtNonStrict< Typelist<T, U>, 0, DefType >
{
    typedef T Result;
};
template <class T, class U, unsigned int i, typename DefType>
struct TypeAtNonStrict< Typelist<T, U>, i, DefType >
{
    typedef typename TypeAtNonStrict<U, i - 1, DefType>::Result Result;
};

//3 查找TypeList
template<class TList,class T> struct IndexOf;//声明
template<class T>
struct IndexOf<NullType,T>//如果TList为NullType,那么令value = -1;
{
    enum{value = -1};
};
template<class Tail,class T>
struct IndexOf<Typelist<T,Tail> ,T>//如果T是TList中的头端,那么令value= 0;
{
    enum{value = 0};
};
template<class Head,class Tail,class T>//将IndexOf施于TList尾端和T,并将结果置于一个临时变量temp
struct IndexOf<Typelist<Head,Tail> ,T>//如果temp为-1,令value为-1,否则令value为1+temp
{
private:
    enum{temp = IndexOf<Tail,T>::value};//temp要先于value声明定义。
public:
    enum{value = temp == -1 ? -1 : temp + 1};
};

//4 附加元素到typelist
template <class Tlist,class T>struct Append;//声明
template<>struct Append<NullType,NullType>//如果TList是NULL而且T是NULL,那么令Result为NullType
{
    typedef NullType Result;
};
template <class T> struct Append<NullType,T> //如果TList是NullType,且T是type(非typelist),
{                                           //那么Result将是"只含有唯一元素的T";
    typedef TYPELIST_1(T) Result;
};
template <class Head,class Tail>
struct Append<NullType,Typelist<Head,Tail> >// 如果TList是NullType,且T是一个typelist,那么Result便是T本身
{
    typedef Typelist<Head,Tail> Result;
};
template<class Head,class Tail,class T>//否则,如果Tlist是non-null,那么result将是个typelist,以TList::Head
struct Append<Typelist<Head,Tail>,T>   //为起头端,并以T附加到TList::Tail的结果为其尾端。
{
    typedef Typelist<Head,typename Append<Tail,T>::Result> Result;
};

//5 Reverse
template <class TList> struct Reverse;
template <>struct Reverse<NullType>
{
    typedef NullType Result;
};
template <class Head, class Tail>
struct Reverse< Typelist<Head, Tail> >
{
    typedef typename Append<
        typename Reverse<Tail>::Result, Head>::Result Result;
};

#endif

调用测试代码:

void typelists_test()
{
    typedef TYPELIST_0() TL0;
    typedef TYPELIST_3(char,int,double) TL3;
    typedef TYPELIST_3(char,int,double) TL3_1;
    //Length
    std::cout<<Length<TL0>::value<<std::endl;
    std::cout<<Length<TL3>::value<<std::endl;

    //TypeAt
    typedef TypeAt<TL3,0>::Result Parm1;
    typedef TypeAt<TL3,1>::Result Parm2;
    typedef TypeAt<TL3,2>::Result Parm3;

    typedef TypeAtNonStrict<TL3,3,EmptyType>::Result TEST_TYPE;

    std::cout<<"Parm1 Type:"<<typeid(Parm1).name() <<" sizeof : "<< sizeof(Parm1)<<std::endl;
    std::cout<<"Parm2 Type:"<<typeid(Parm2).name() <<" sizeof : "<< sizeof(Parm2)<<std::endl;
    std::cout<<"Parm3 Type:"<<typeid(Parm3).name() <<" sizeof : "<< sizeof(Parm3)<<std::endl;
    std::cout<<"TEST_TYPE Type:"<<typeid(TEST_TYPE).name() <<" sizeof : "<< sizeof(TEST_TYPE)<<std::endl;

    //IndexOf
    std::cout<<"char indexof TL3 :"<<IndexOf<TL3,char>::value<<std::endl;
    std::cout<<"int indexof TL3 :"<<IndexOf<TL3,int>::value<<std::endl;
    std::cout<<"float indexof TL3 :"<<IndexOf<TL3,float>::value<<std::endl;

    //Append
    typedef Append<TL3,int> TL4;//TL4不是一个TypeList
    typedef Append<TL3_1,TYPELIST_2(float,double)> TL5;
    std::cout<<"TL4 Length  :"<<Length<TL4::Result>::value<<std::endl;
    std::cout<<"TL5 Length  :"<<Length<TL5::Result>::value<<std::endl;

    //Reverse
    std::cout<<"Reverse result:"<<typeid(Reverse<TL3>::Result).name()<<std::endl;
}

3.应用

  举例:大学绩点计算,众所周知的这是一个基于权重的计算方法,对于不同学分的学科权重不同。现在假设有4科目吧:信号,电磁场,高频,微波器件

那么可能的实现方式是这样的:(PS觉得这个例子不太恰当)

①:直接计算

//伪代码
if (当前的科目是信号) {
    信号科目相关加权和分数处理...
}
if (当前的科目是电磁场) {
    电磁场科目相关加权和分数处理...
}
//剩下的略

②:利用类和继承来实现。

  第一种的实现很直接却脱离了面向对象的设计,显得代码十分多,乱。

  第二种大体代码就像下面,在这里创建了对应的实例化对象进行处理。

#include<bits/stdc++.h>
using namespace std;

class ScoreBase {
public :
    ScoreBase() {}
    virtual int calcuWeight(score * scores);
    virtual ~ScoreBase() {}
}

class ScoreSignal : public ScoreBase {
public :
    ScoreSignal(){}
    virtual int calcuWeight(score * scores);
}

class ScoreElect : public ScoreBase {
public :
    ScoreElect() {}
    virtual int calcuWeight(score * scores);
}

vector<ScoreBase *>dealscore;
dealscore.push_back(new ScoreSignal());
dealscore.push_back(new ScoreElect());
score * scores = get_scores();//获取到了分数int totalWeight = 0;
for (int i = 0 ; i < (int)dealscore.size() ; i++)
    totalWeight += dealscore[i] -> calcuWeight(scores);

③:使用typelist完成这件事情

记得之前的展开宏么,这就可以使用到它了。为了方便,我们用结构体(纯粹是因为默认public,关于在C++中struct和class的区别,http://www.cnblogs.com/Commence/p/7481315.html)

第一步先通过宏定义出我们想要的东西

struct signalscore {
    int static calcuWeight(score * scores);
}

struct elecscore {
    int static calcuWeight(score * scores);
}

struct highfreqscore {
    int static calcuWeight(score * scores);
}

typedef Typelist<signalscore,Typelist<elecscore,Tyeplist<highfreqscore,NullType> > >calWeightList;

第二步:类似前面获取Length的方法,建立模板来处理它。

template<class TList>struct calWeight;
template<>struct calWeight<NullType> {
    int static calcuWeight(scene * scenes) { return 0;}
}

template<class T,class U>
struct calWeight< Typelist<T,U> > {
    int static calWeight(scene * scenes) {
        return T::calcuWeight(scene * scenes) + calWeight<U>::calWeight(scene * scenes);
    }
}

std::cout << calWeight<calWeightList>::calWeight(scenes) << std::endl;

由于时间关系:上述第三种并没有完整的可以编译通过的代码。将在近期补充

时间: 2024-10-15 08:48:33

C++ 模板特化以及Typelist的相关理解的相关文章

C++模板之隐式实例化、显示实例化、隐式调用、显示调用和模板特化详解

代码编译运行环境:VS2012+Debug+Win32 模板的实例化指函数模板(类模板)生成模板函数(模板类)的过程.对于函数模板而言,模板实例化之后,会生成一个真正的函数.而类模板经过实例化之后,只是完成了类的定义,模板类的成员函数需要到调用时才会被初始化.模板的实例化分为隐式实例化和显示实例化. 对函数模板的使用而言,分为两种调用方式,一种是显示模板实参调用(显示调用),一种是隐式模板实参调用(隐式调用).对于类模板的使用而言,没有隐式模板实参和显式模板实参使用的说法,因为类模板的使用必须显

C++ template —— 模板特化(五)

本篇讲解模板特化------------------------------------------------------------------------------------------------------------第12章 特化和重载------------------------------------------------------------------------------------------------------------前面几篇博客讲解了C++模板如何

C++模板特化编程

在C++中,模板特化是除了类之外的一种封装变化的方法.模板特化可以通过编译器来对不同的模板参数生成不同的代码. 模板特化通常以模板结构体作为载体.常用技法包括:类型定义.静态成员常量定义和静态成员函数定义. 从不同的角度来看待模板特化,模板特化可以扮演以下角色: 一.函数 模板结构体可以被看做一种函数,其参数必须是明确的类型.整数或者变长参数.变长参数展开甚至可以递归. 二.分支 模板结构体可以实现判断模板参数的类型来完成不同的工作.在编程的时候,如果碰到类似“如果类型是A时进行a操作,如果类型

函数模板特化

#include <iostream> template <typename T> T max(T x, T y) { return x > y ? x : y; } //函数模板特化 template <> const char* max(const char* x, const char* y){ return strcmp(x, y) > 0 ? x : y; } int main(){ std::cout << max(1, 2); st

C++ Primer 学习笔记_84_模板与泛型编程 --模板特化

模板与泛型编程 --模板特化 引言: 我们并不总是能够写出对全部可能被实例化的类型都最合适的模板.某些情况下,通用模板定义对于某个类型可能是全然错误的,通用模板定义或许不能编译或者做错误的事情;另外一些情况下,能够利用关于类型的一些特殊知识,编写比从模板实例化来的函数更有效率的函数. compare函数和 Queue类都是这一问题的好样例:与C风格字符串一起使用进,它们都不能正确工作. compare函数模板: template <typename Type> int compare(cons

C++程序设计方法4:模板特化

模板参数的具体化/特殊化 有时,有些类型不适用,则需要对模板进行特殊化处理,这称为"模板特化" 对函数模板,如果有多个模板参数,则特化时必须提供所有参数的特例类型,不能部分特化: 如: char *sum(char *,char *); 在函数名后用<>括号括起具体类型 template<> char* sum<char*>(char* a,char* b){...} 由编译器推导出具体的类型,函数名为普通形式: template<> c

C++ 模板特化

1.模板特化的定义 C++中的模板特化不同于模板的实例化,模板参数在某种特定类型下的具体实现称为模板的特化.模板特化有时也称之为模板的具体化,分别有函数模板特化和类模板特化. 1.1函数模板特化 函数模板特化是在一个统一的函数模板不能在所有类型实例下正常工作时,需要定义类型参数在实例化为特定类型时函数模板的特定实现版本.查看如下例: #include <iostream> using namespace std; template<typename T> T Max(T t1,T

C++ Primer 学习笔记_85_模板与泛型编程 --模板特化[续]

模板与泛型编程 --模板特化[续] 三.特化成员而不特化类 除了特化整个模板之外,还可以只特化push和pop成员.我们将特化push成员以复制字符数组,并且特化pop成员以释放该副本使用的内存: template<> void Queue<const char *>::push(const char *const &val) { char *new_item = new char[sizeof(val) + 1]; strncpy(new_item,val,sizeof(

模板特化和偏模板特化例子(template specialization and partial template specialization)

测试环境: win7 64 g++ 4.8.1 /*********************************************************************************   Copyright (C), 1988-1999, drvivermonkey. Co., Ltd.   File name:    Author: Driver Monkey   Version:    Mail:[email protected]   Date: 2014.04