[汇编与C语言关系]1.函数调用

  对于以下程序:

int bar(int c, int d)
{
    int e = c + d;
    return e;
}
int foo(int a, int b)
{
    return bar(a, b);
}
int main(void)
{
    foo(2, 3);
    return 0;
}

  在编译时加上-g选项,用objdump反汇编时可以把C代码和汇编代码穿插起来显示:

反汇编的结果很长以下是截取要分析的部分:

  整个程序的执行过程是main调用foo, foo调用bar, 用gdb跟踪程序的执行,直到bar函数中的int e = c + d;语句执行完毕准备返回时,这时在gdb中打印函数栈帧。

disassemble可以反汇编当前函数或者指定的函数,单独用disassemble是反汇编当前函数,如果disassemble后边跟函数名或地址则反汇编指定的函数。

s(step)命令可以一行代码一行代码的单步调试,而si命令可以一条指令一条指令的单步调试。bt 列出调用栈

info registers可以显示所有寄存器的当前值。在gdb中表示寄存器名时前面要加个$,例如p $esp命令查看esp寄存器的值(上图没有展示该命令),在上例中esp寄存器的值是0xbff1c3f4,所以x/20 $esp命令查看内存中从0xbff1c3f4地址开始的20个32位数。在执行程序时,操作系统为进程分配一块栈空间来存储函数栈帧,esp寄存器总是指向栈顶,,在x86平台上这个栈是从高地址向低地址增长的,每次调用一个函数都要分配一个栈帧来存储参数和局部变量,现在我们分析这些数据是怎么存储的,根据gdb的输出结果图示如下:

  途中每个小方格占4个字节,例如b:3这个方格的内存地址是0xbf822d20~0xbf822d23。我们从main函数的这里开始看起:

  要调用函数foo先要把参数准备好,第二个参数保存在esp+4所指向的内存位置,第一个参数保存在esp所指向的内存位置,可见参数是从右往左一次压栈的。然后执行call指令,这个指令有两个作用:

    1. foo函数调用完之后要返回call的下一条指令继续执行,所以把call的下一条指令的地址0x80483e9压栈,同时把esp的值  减4,esp的值现在是0xbf822d18。

    2. 修改程序计数器eip, 跳转到foo函数的开头执行。

  现在看foo函数的汇编代码:

  首先将ebp寄存器的值压栈,同时把esp的值再减4,esp的值现在是0xbf822d14,然后把这个值传送给ebp寄存器。换句话说就是把原来ebp的值保存在栈上,然后又给ebp赋了新值。在每个函数的栈帧中,ebp指向栈底,esp指向栈顶,在函数执行过程中esp随着压栈和出栈操作随时变化,而ebp是不动的,函数的参数和局部变量都是通过ebp的值加上一个偏移量来访问的,例如foo函数的参数a和b分别通过ebp+8和ebp+12来访问,所以下面的指令把参数a和b再次压栈,为调用bar函数做准备,然后把返回地址压栈,调用bar函数:

  现在看bar函数的指令:

  这次又把foo函数的ebp压栈保存,然后给ebp赋了新值,指向bar函数栈帧的栈底,通过ebp+8和ebp+12分别可以访问参数c和d。bar函数还有一个局部变量e,可以通过ebp-4来访问。所以后面几条指令的意思是把参数c和d取出来存在寄存器中做加法,add指令的计算结果保存在eax寄存器中,再把eax寄存器存回局部变量e的内存单元。

  现在可以解释为什么在gdb中可以用bt命令和frame命令查看每个栈帧上的参数和局部变量了:如果我当前在bar函数中,我可以通过ebp找到bar函数的参数和局部变量,也可以找到foo函数的ebp保存在栈上的值,有个foo函数的ebp,又可以找到它的参数和局部变量,也可以找到main函数的ebp保存在栈上的值,因此各函数的栈帧通过保存在栈上的ebp的值串起来了。现在看bar函数的返回命令:

  bar函数有一个int型的返回值,这个返回值是通过eax寄存器传递的,所以首先把e的值读到eax寄存器中。然后执行leave指令,这个指令是函数开头的push %ebp和mov %esp, %ebp的逆操作:

    1. 把ebp的值赋给esp,现在esp的值是0xbf822d04。

    2. 现在esp所指向的栈顶保存着foo函数栈帧的ebp,把这个值恢复给ebp,同时esp增加4,现在esp的值是0xbf822d08。

  最后是ret指令,它是call指令的逆操作:

    1. 现在esp所指向的栈顶保存着返回地址,把这个值恢复给eip,同时esp增加4,现在esp的值是0xbf822d0c。

    2. 修改了程序计数器eip,因此跳转到返回地址0x80483c2继续执行。

  地址0x80483c2处是foo函数的返回指令:

  重复同样的过程,就又返回到了main函数。注意函数调用和返回过程中的这些规则:

    1. 参数压栈传递,并且是从右向左依次压栈。
    2.  ebp 总是指向栈帧的栈底。
    3. 返回值通过 eax 寄存器传递。
  这些规则并不是体系结构所强加的, ebp 寄存器并不是必须这么用,函数的参数和返回值也不是必须这么传,只是操作系统和编译器选择了以这样的方式实现C代码中的函数调用,这称为Calling Convention,除了Calling Convention之外,操作系统还需要规定许多C代码和二进制指令之间的接口规范,统称为ABI(Application Binary Interface)。

时间: 2024-10-09 17:07:15

[汇编与C语言关系]1.函数调用的相关文章

[汇编与C语言关系]2. main函数与启动例程

为什么汇编程序的入口是_start,而C程序的入口是main函数呢?以下就来解释这个问题 在<x86汇编程序基础(AT&T语法)>一文中我们汇编和链接的步骤是: $ as hello.s -o hello.o $ ld hello.o -o hello 我们用gcc main.c -o main开编译一个c程序,其实际分为三个步骤:编译.汇编.链接 $ gcc -S main.c 生成汇编代码 $ gcc -c main.s 生成目标文件 $ gcc main.o 生成可执行文件 我们

[汇编与C语言关系]3. 变量的存储布局

以下面C程序为例: #include <stdio.h> const int A = 10; int a = 20; static int b = 30; int c; int main(void) { static int a = 40; char b[] = "Hello World"; register int c = 50; printf("Hello World%d\n", c); return 0; } 我们在全局作用域和main函数的局部作

[汇编与C语言关系]4. 结构体和联合体

用反汇编的方法研究一下C语言的结构体: #include <stdio.h> int main(int argc, char ** argv) { struct { char a; short b; int c; char d; } s; s.a = 1; s.b = 2; s.c = 3; s.d = 4; printf("%u\n", sizeof(s)); return 0; } main函数中几条语句的反汇编结果如下: 从访问结构体成员的指令可以看出,结构体的四个成

[汇编与C语言关系]5. volatile限定符

现在研究一下编译器优化会对生成的指令产生什么影响,在此基础上介绍C语言的volatile限定符.首先看下面的C程序: /* artificial device registers */ unsigned char recv; unsigned char send; /* memory buffer */ unsigned char buf[3]; int main(void) { buf[0] = recv; buf[1] = recv; buf[2] = recv; send = ~buf[0

ARM基础:为何C语言(的函数调用)需要堆栈,而汇编语言却不需要堆栈

为何C语言(的函数调用)需要堆栈,而汇编语言却不需要堆栈 之前看了很多关于uboot的分析,其中就有说要为C语言的运行,准备好堆栈. 而自己在Uboot的start.S汇编代码中,关于系统初始化,也看到有堆栈指针初始化这个动作.但是,从来只是看到有人说系统初始化要初始化堆栈,即正确给堆栈指针sp赋值,但是却从来没有看到有人解释,为何要初始化堆栈.所以,接下来的内容,就是经过一定的探究,试图来解释一下,为何要初始化堆栈,即: 为何C语言的函数调用要用到堆栈,而汇编却不需要初始化堆栈. 要明白这个问

为何C语言(的函数调用)需要堆栈,而汇编语言不需要

转自:Uboot中start.S源码中指令级的详尽解析 green-waste为何 C 语言(的函数调用)需要堆栈,而汇编语言却需要堆栈之前看了很多关亍uboot的分析,其中就有说要为C语言的运行,准备好堆栈.而自己在Uboot的start.S汇编代码中,关于系统初始化,也看到有堆栈指针初始化这个动作.但是,从来只看到有人说系统初始化要初始化堆栈,即正确给堆栈指针sp赋值,但是却从来没有看到有人解释,为何要初始化堆栈.所以,接下来的内容,就是经过一定的探究,试图来解释一下,为何要初始化堆栈,即:

从linux0.11中起动部分代码看汇编调用c语言函数

上一篇分析了c语言的函数调用栈情况,知道了c语言的函数调用机制后,我们来看一下,linux0.11中起动部分的代码是如何从汇编跳入c语言函数的.在LINUX 0.11中的head.s文件中会看到如下一段代码(linux0.11的启动分析部分会在另一部分中再分析,由于此文仅涉及c与汇编代码的问题,). after_page_tables: pushl $0 # These are the parameters to main :-) pushl $0 pushl $0 pushl $L6 # re

C语言中递归什么时候可以省略return引发的思考:通过内联汇编解读C语言函数return的本质

事情的经过是这样的,博主在用C写一个简单的业务时使用递归,由于粗心而忘了写return.结果发现返回的结果依然是正确的.经过半小时的反汇编调试,证明了我的猜想,现在在博客里分享.也是对C语言编译原理的一次加深理解. 引子: 首先我想以一道题目引例,比较能体现出问题. 例1: #include <stdio.h> /** 函数功能:用递归实现位运算加法 */ int Add_Recursion(int a,int b) { int carry_num = 0, add_num = 0; if (

C语言中递归什么时候能够省略return引发的思考:通过内联汇编解读C语言函数return的本质

事情的经过是这种,博主在用C写一个简单的业务时使用递归,因为粗心而忘了写return.结果发现返回的结果依旧是正确的.经过半小时的反汇编调试.证明了我的猜想,如今在博客里分享.也是对C语言编译原理的一次加深理解. 引子: 首先我想以一道题目引例,比較能体现出问题. 例1: #include <stdio.h> /** 函数功能:用递归实现位运算加法 */ int Add_Recursion(int a,int b) { int carry_num = 0, add_num = 0; if (b