STM32F103的11个定时器详解(转)

源:STM32F103的11个定时器详解

STM32F103系列的单片机一共有11个定时器,其中:
2个高级定时器
4个普通定时器
2个基本定时器
2个看门狗定时器
1个系统嘀嗒定时器

出去看门狗定时器和系统滴答定时器的八个定时器列表;

8个定时器分成3个组;
TIM1和TIM8是高级定时器
TIM2-TIM5是通用定时器
TIM6和TIM7是基本的定时器
这8个定时器都是16位的,它们的计数器的类型除了基本定时器TIM6和TIM7都支持向上,向下,向上/向下这3种计数模式

计数器三种计数模式
向上计数模式:从0开始,计到arr预设值,产生溢出事件,返回重新计时
向下计数模式:从arr预设值开始,计到0,产生溢出事件,返回重新计时
中央对齐模式:从0开始向上计数,计到arr产生溢出事件,然后向下计数,计数到1以后,又产生溢出,然后再从0开始向上计数。(此种技术方法也可叫向上/向下计数)

基本定时器(TIM6,TIM7)的主要功能:
只有最基本的定时功能,。基本定时器TIM6和TIM7各包含一个16位自动装载计数器,由各自的可编程预分频器驱动

通用定时器(TIM2~TIM5)的主要功能:
除了基本的定时器的功能外,还具有测量输入信号的脉冲长度( 输入捕获) 或者产生输出波形( 输出比较和PWM)

高级定时器(TIM1,TIM8)的主要功能:

高级定时器不但具有基本,通用定时器的所有的功能,还具有控制交直流电动机所有的功能,你比如它可以输出6路互补带死区的信号,刹车功能等等

通用定时器的时钟来源;
a:内部时钟(CK_INT)
b:外部时钟模式1:外部输入脚(TIx)
c:外部时钟模式2:外部触发输入(ETR)
d:内部触发输入(ITRx):使用一个定时器作为另一个定时器的预分频器

通用定时期内部时钟的产生:

从截图可以看到通用定时器(TIM2-7)的时钟不是直接来自APB1,而是通过APB1的预分频器以后才到达定时器模块。
当APB1的预分频器系数为1时,这个倍频器就不起作用了,定时器的时钟频率等于APB1的频率;
当APB1的预分频系数为其它数值(即预分频系数为2、4、8或16)时,这个倍频器起作用,定时器的时钟频率等于APB1时钟频率的两倍。

自动装在寄存器arr值的计算:
Tout= ((arr+1)*(psc+1))/Tclk;
Tclk:TIM3的输入时钟频率(单位为Mhz)。
Tout:TIM3溢出时间(单位为us)。
计时1S,输入时钟频率为72MHz,加入PSC预分频器的值为35999,那么:
((1+psc )/72M)*(1+arr )=((1+35999)/72M)*(1+arr)=1秒
则可计算得出自动窗装载寄存器arr=1999

通用定时器PWM工作原理
以PWM模式2,定时器3向上计数,有效电平是高电平,定时器3的第3个PWM通道为例:

定时器3的第3个PWM通道对应是PB0这引脚,三角顶点的值就是TIM3_ARR寄存器的值,上图这条红线的值就TIM3_CCR3
当定时器3的计数器(TIM3_CNT)刚开始计数的时候是小于捕获/比较寄存器(TIM3_CCR3)的值,
此时PB0输出低电平,随着计数器(TIM3_CNT)值慢慢的增加,
当计数器(TIM3_CNT)大于捕获/比较寄存器(TIM3_CCR3)的值时,这时PB0电平就会翻转,输出高电平,计数器(TIM3_CNT)的值继续增加,
当TIM3_CNT=TIM3_ARR的值时,TIM3_CNT重新回到0继续计数,PB0电平翻转,输出低电平,此时一个完整的PWM信号就诞生了。

PWM输出模式;
STM32的PWM输出有两种模式:
模式1和模式2,由TIMx_CCMRx寄存器中的OCxM位确定的(“110”为模式1,“111”为模式2)。区别如下:
110:PWM模式1,在向上计数时,一旦TIMx_CNT
在向下计数时,一旦TIMx_CNT>TIMx_CCR1时通道1为无效电平(OC1REF=0),否则为有效电平(OC1REF=1)。
111:PWM模式2-在向上计数时,一旦TIMx_CNTTIMx_CCR1时通道1为有效电平,否则为无效电平。
由以上可知:
模式1和模式2正好互补,互为相反,所以在运用起来差别也并不太大。而从计数模式上来看,PWM也和TIMx在作定时器时一样,也有向上计数模式、向下计数模式和中心对齐模式

PWM的输出管脚:
不同的TIMx输出的引脚是不同(此处设计管脚重映射
TIM3复用功能重映射:

注:重映射是为了PCB的设计方便。值得一提的是,其分为部分映射和全部映射

PWM输出频率的计算:
PWM输出的是一个方波信号,信号的频率是由TIMx的时钟频率和TIMx_ARR这个寄存器所决定的
输出信号的占空比则是由TIMx_CRRx寄存器确:
占空比=(TIMx_CRRx/TIMx_ARR)*100%
PWM频率的计算公式为:

其中
F就是PWM输出的频率,单位是:HZ;
ARR就是自动重装载寄存器(TIMx_ARR);
PSC 就是预分频器(TIMx_PSC);
72M就是系统的频率;

STM32 高级定时器PWM的输出

一路带死区时间的互补PWM的波形图

STM32F103VC这款单片机一共有2个高级定时器TIM1和TIM8
这2个高级定时器都可以同时产生3路互补带死区时间的PWM信号和一路单独的PWM信号,
具有刹车输入功能,在紧急的情况下这个刹车功能可以切断PWM信号的输出
还具有支持针对定位的增量(正交)编码器和霍尔传感器电路
高级控制定时器(TIM1 和TIM8) 由一个16位的自动装载计数器组成,它由一个可编程的预分频器驱动

它适合多种用途,包含测量输入信号的脉冲宽度( 输入捕获) ,或者产生输出波形(输出比较、PWM、嵌入死区时间的互补PWM等)。
使用定时器预分频器和RCC时钟控制预分频器,可以实现脉冲宽度和波形周期从几个微秒到几个毫秒的调节。
高级控制定时器(TIM1 和TIM8) 和通用定时器(TIMx) 是完全独立的,它们不共享任何资源

死区时间
H桥电路为避免由于关断延迟效应造成上下桥臂直通,有必要设置死区时间
死区时间可有效地避免延迟效应所造成的一个桥臂未完全关断,而另一桥臂又处于导通状态,避免直通炸开关管。
死区时间越大,电路的工作也就越可靠,但会带来输出波形的失真以及降低输出效率。
死区时间小,输出波形要好一些,但是会降低系统的可靠性,一般这个死区时间设置为us级

元器件死区时间是不可以改变的,它主要是取决于元器件的制作工艺和材料!

原则上死区时间当然越小越好。设置死区时间的目的,其实说白了就是为了电路的安全。最佳的设置方法是:在保证安全的前提下,设置的死区时间越小越好。以不炸功率管、输出不短路为目的。

STM32死区时间探究

设置寄存器:就是刹车和死区控制寄存器(TIMx_BDTR)

这个寄存器的第0—7位,这8个位就是用来设置死区时间的,使用如下:

以TIM1为例说明其频率是如何产生的。

定时器1适中产生路线:
系统时钟-> AHB预分频 -> APB2预分频 –> TIM1倍频器–> 产生TIM1的时钟系统
流程图看可以看出,要想知道TIM1的时钟,就的知道系统时钟,AHB预分频器的值,还有APB2预分频器的值,只要知道了这几个值,即可算出TIM1的时钟频率?
这些值从何来,在“SystemInit()”这个时钟的初始化函数中已经给我们答案了,在这个函数中设置的系统时钟是72MZ,AHB预分频器和APB2预分频器值都是设置为1,由此可算出:TIM1时钟频率:
72MHZ了,TDTS=1/72MHZ=13.89ns

Tdtg死区时间步进值,它的值是定时器的周期乘以相应的数字得到的

下面看看官方给的公式如何使用,如下:
DTG[7:5]=0xx=>DT=DTG[6:0]×Tdtg,Tdtg=TDTS
首先由DTG[7:5]=0xx可以知道的是:DTG的第7位必须为0,剩余的0~6这7位可配置死区时间,假如TIM1的时钟为72M的话,那么由公式Tdtg=TDTS可计算出:TDTS=1/72MHZ=13.89ns。
有了这个值,然后通过公式DT=DTG[6:0]×Tdtg即可计算出DT的值。

如果DTG的第0~6位均为0的话,DT=0
如果DTG的第0~6位均为1的话,DT=127*13.89ns=1764ns
如果TIM1的时钟为72M的话,
公式1可设置的死区时间0~1764ns,也就是说:
如果你的项目需要输出的PWM信号要求的死区时间是0——1764ns的时候你就可以用公式1

同样可计算出4个公式的死去区间,如下:
公式1:DT=0~1764ns
公式2:DT=1777.9ns~3528.88ns
公式3:DT=3555.84ns~7000.56ns
公式4:DT=7111.68ns~14001.12ns

如何设置死区时间:
假如我们设计了一个项目要求输出的PWM信号中加入一个3us的死区时间因为3us这个值在第二个公式决定的死区范围之内所以选择第二个公式。3000/(13.89*2)=108,
所以DTG[5:0]=108-64=44
所以DTG=127+44+32=203=0XCB,TIM1->BDTR|=0Xcb
这里为什么要在加上一个32那?在公式2中DTG的第5位是一个X,也就是说这一位可以设置为高电平,也可以设置为低电平,在这里我们将这一位设置为了高电平,所有要在加上一个32.如此而已!

时间: 2024-12-20 06:44:20

STM32F103的11个定时器详解(转)的相关文章

Internet Explorer 11 Enterprise Mode 详解

白驹过隙,已经三月未能及时更新博文,今天为大家分享有关IE 11 Enterprise Mode(企业模式)两个章节内容,之前看到好多群里讨论有关IE11企业模式的问题,这里简单做一下汇总,第一章为IE11企业模式详解,第二章为企业模式排错,希望对大家理解IE 11 Enterprise Mode的含义及企业批量开启及排错有帮助,谢谢. 一.IE 11企业模式简介: 企业模式是可以在 Windows 8.1 更新和 Windows 7 设备的 Internet Explorer 11 上运行的一

C++11多线程——lock详解

C++11提供了两种管理锁的类 std::lock_guard:与mutex RAII相关,方便线程对互斥量上锁 std::unique_lock:   与mutex RAII相关,方便线程对互斥量上锁,相比std::lock_guard提供了更好的上锁和解锁控制 一 lock_guard详解 lock_guard是一个模板类:template<classMutex>class lock_guard; lock_guard对象通常用来管理某个锁(Lock)对象,与Mutex RALL相关,方便

Node中的定时器详解

在大多数的业务中,我们都会有一些需求,例如几秒钟实现网页的跳转,几分钟对于后台数据进行清理,node与javascript都具有将代码延迟一段时间的能力.在node中可以使用三种方式实现定时功能:超时时间,时间间隔和即时定时器.虽然有这三种定时器功能但是在平常的业务中使用还是有差别的,下来我们就一起讨论一下这三种定时器. 1.用超时时间来延迟工作 超时定时器用于将工作延迟一个特定的时间数量,当时间到了,回调函数执行,而定时器会消失.(建议:对于只执行一次的工作,使用超时时间). 1秒之后执行my

STM32 通用T2、T3、T4、T5定时器详解

定时器初始化配置 1 void TIM3_Configuration(void)//1MS 2 { 3 TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; 4 5 TIM_DeInit(TIM3);//开一下时钟再关闭 6 /* 设置TIM2CLK 为 72MHZ */ 7 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3 , ENABLE); 8 9 10 /* 自动重装载寄存器周期的值(计数值) */ 11 TIM

linux 内核定时器详解

原文摘自:http://www.linux-cn.com/html/linux/kernel/20070412/1886.shtml Linux内核2.4版中去掉了老版本内核中的静态定时器机制,而只留下动态定时器.相应地在timer_bh()函数中也不再通过run_old_timers()函数来运行老式的静态定时器.动态定时器与静态定时器这二个概念是相对于Linux内核定时器机制的可扩展功能而言的,动态定时器是指内核的定时器队列是可以动态变化的,然而就定时器本身而言,二者并无本质的区别.考虑到静

c++11 std::declval 详解

函数模板 std::declval (c++11 only) template<typename T> typename add_rvalue_reference<T>::type declval() noexcept; 功能描述: 返回一个类型的右值引用,不管是否有没有默认构造函数或该类型不可以创建对象.(可以用于抽象基类); 参数: 无 返回值: 类型T的右值引用 例子: // declval example #include <utility> // std::d

Systick定时器详解

Systick定时器,是一个简单的定时器,对于CM3,CM4内核芯片,都有Systick定时器. Systick定时器常用来做延时,或者实时系统的心跳时钟.这样可以节省MCU资源,不用浪费一个定时器.比如UCOS中,分时复用,需要一个最小的时间戳,一般在STM32+UCOS系统中,都采用Systick做UCOS心跳时钟. Systick定时器就是系统滴答定时器,一个24位的倒计数定时器,计到0时,将从RELOAD寄存器中自动重装载定时初值.只要不把它在SysTick 控制及状态寄存器中的使能位清

Android初级教程启动定时器详解

本案例知识是:后台执行定时任务. Alarm机制: 一.创建LongRunningService类 package com.example.servicebestpractice; import java.util.Date; import android.app.AlarmManager; import android.app.PendingIntent; import android.app.Service; import android.content.Intent; import and

11. JavaSE-Final关键字详解

Final关键字: Final 可以修饰类.方法.变量 Final修饰的类不可以被继承 Final修饰的方法不可以被覆盖 Final修饰的变量是一个常量,只能被赋值一次 内部类只能访问被final修饰的局部变量 继承弊端: 打破了封装性,而final可以可以解决乱用继承的情况. 为什么要用final修饰变量? 其实在程序如果一个数据是固定的,那么直接使用这个数据就可以了,但是这样这样阅读性差,所 以他给数据起个名称,而且这个变量名称的值不能变化,所以加上final固定. 写法规范: 常量所有字母