Fibonacci的递归实现和非递归实现

递归实现很好实现,主要就是递归和分治的思想。

非递归实现可以使用数组来实现,一般递归是将初始值放在最后来使用;非递归可以考虑以初始值(fib(0)=0;fib(1)=1;)为基础,利用循环来进行计算。

代码:

public class Fibonacci{
	public int getResultByRecursion(int n){
		if(n == 0){
			return 0;
		}else if(n == 1){
			return 1;
		}else{
			return getResult(n-1)+getResult(n-2);
		}
	}
	public int getResult(int n){
		int[] temp = new int[n];
		temp[0] = 0;
		temp[1] = 1;
		for(int i=2;i<temp.length;i++){
			temp[i] = temp[i-1] + temp[i-2];
		}
		return temp[n-1];
	}
	public static void main(String[] args){
		int n = 20;
		Fibonacci obj = new Fibonacci();
		System.out.println("the recursion result is "+obj.getResultByRecursion(n));
		System.out.println("the nonrecursion result is "+obj.getResult(n));
	}
}

共勉!

时间: 2024-10-10 19:51:43

Fibonacci的递归实现和非递归实现的相关文章

【C语言】求斐波那契(Fibonacci)数列通项(递归法、非递归法)

意大利的数学家列昂那多·斐波那契在1202年研究兔子产崽问题时发现了此数列.设一对大兔子每月生一对小兔子,每对新生兔在出生一个月后又下崽,假若兔子都不死亡.   问:一对兔子,一年能繁殖成多少对兔子?题中本质上有两类兔子:一类是能生殖的兔子,简称为大兔子:新生的兔子不能生殖,简称为小兔子:小兔子一个月就长成大兔子.求的是大兔子与小兔子的总和. 月     份  ⅠⅡ  Ⅲ  Ⅳ  Ⅴ Ⅵ  Ⅶ  Ⅷ Ⅸ Ⅹ  Ⅺ  Ⅻ大兔对数 1  1   2   3   5  8  13  21 34 55 

二叉树的递归遍历和非递归遍历(附详细例子)

mnesia在频繁操作数据的过程可能会报错:** WARNING ** Mnesia is overloaded: {dump_log, write_threshold},可以看出,mnesia应该是过载了.这个警告在mnesia dump操作会发生这个问题,表类型为disc_only_copies .disc_copies都可能会发生. 如何重现这个问题,例子的场景是多个进程同时在不断地mnesia:dirty_write/2 mnesia过载分析 1.抛出警告是在mnesia 增加dump

递归如何转换为非递归

递归算法实际上是一种分而治之的方法,它把复杂问题分解为简单问题来求解.递归的特点包括:递归过程简洁.易编.易懂:递归过程效率低.重复计算多. 考虑递归的执行效率低,可以尝试将递归过程转换为非递归过程.本文就是来探讨怎么转换的. 将递归算法转换为非递归算法有两种方法,一种是直接求值(迭代/循环),不需要回溯:另一种是不能直接求值,需要回溯.前者使用一些变量保存中间结果,称为直接转换法:后者使用栈保存中间结果,称为间接转换法,下面分别讨论这两种方法. 一.直接转换法 直接转换法通常用来消除尾递归和单

数据结构--Avl树的创建,插入的递归版本和非递归版本,删除等操作

AVL树本质上还是一棵二叉搜索树,它的特点是: 1.本身首先是一棵二叉搜索树. 2.带有平衡条件:每个结点的左右子树的高度之差的绝对值最多为1(空树的高度为-1). 也就是说,AVL树,本质上是带了平衡功能的二叉查找树(二叉排序树,二叉搜索树). 对Avl树进行相关的操作最重要的是要保持Avl树的平衡条件.即对Avl树进行相关的操作后,要进行相应的旋转操作来恢复Avl树的平衡条件. 对Avl树的插入和删除都可以用递归实现,文中也给出了插入的非递归版本,关键在于要用到栈. 代码如下: #inclu

链表反转(递归方式,非递归方式)

//非递归方式进行链表反转 public ListNode reverseList(ListNode head){ if(head==null||head.next==null){ return head; }else { ListNode pre=head; ListNode p=head.next; ListNode next=null; while (p!=null) { next=p.next; p.next=pre; pre=p; p=next; } head.next=null; r

手写栈(递归转化为非递归)

递归的本质是通过栈来保存状态,然后再次调用自己进入新的状态,然后函数返回的时候回到上次保存的状态. 如果一个函数中所有递归形式的调用都出现在函数的末尾,我们称这个递归函数是尾递归的.当递归调用是整个函数体中最后执行的语句且它的返回值不属于表达式的一部分时,这个递归调用就是尾递归.尾递归函数的特点是在回归过程中不用做任何操作,就是没有回溯过程,所以我们可以直接将尾递归写成循环 更一般的递归,想要转化为非递归,就需要模拟栈(手写栈)的行为. 遍历的递归和非递归实现: #include<cstdio>

数据结构二叉树——建立二叉树、中序递归遍历、非递归遍历、层次遍历

数据结构二叉树-- 编写函数实现:建立二叉树.中序递归遍历.借助栈实现中序非递归遍历.借助队列实现层次遍历.求高度.结点数.叶子数及交换左右子树. ("."表示空子树) #include<stdio.h> #include<stdlib.h> //***********二叉树链表节点结构 typedef char DataType; typedef struct Node {  DataType data;  struct Node*LChild;  struc

高效率的取幂运算,递归解法跟非递归解法

long int Pow( long int x, unsigned int n ) { // 求幂运算 if( n == 0 ) return 1; if( n == 1 ) return x; if( n % 2 == 0 ) return Pow( x * x, n / 2 ); else return Pow( x, n - 1 ) * x; // 可以用下列的注释行替换 //return Pow( x * x, n / 2 ) * x; } 上面的是递归解法,时间复杂度为 O(logN

【数据结构】线索化二叉树中序线索化的递归写法和非递归写法

二叉树是一种非线性结构,遍历二叉树几乎都是通过递归或者用栈辅助实现非递归的遍历.用二叉树作为存储结构时,取到一个节点,只能获取节点的左孩子和右孩子,不能直接得到节点的任一遍历序列的前驱或者后继. 为了保存这种在遍历中需要的信息,我们利用二叉树中指向左右子树的空指针来存放节点的前驱和后继信息.所以引入了线索化二叉树.下面我们讲一下线索化二叉树中序线索化的两种实现方法: (1).递归实现中序线索化二叉树 首先我们先看一下线索化二叉树的结构 enum PointerTag{ THREAD, LINK