KL距离,Kullback-Leibler Divergence

http://www.cnblogs.com/ywl925/p/3554502.html

http://www.cnblogs.com/hxsyl/p/4910218.html

http://blog.csdn.net/acdreamers/article/details/44657745

KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy)。它衡量的是相同事件空间里的两个概率分布的差异情况。其物理意义是:在相同事件空间里,概率分布P(x)的事件空间,若用概率分布Q(x)编码时,平均每个基本事件(符号)编码长度增加了多少比特。我们用D(P||Q)表示KL距离,计算公式如下:

当两个概率分布完全相同时,即P(x)=Q(X),其相对熵为0 。我们知道,概率分布P(X)的信息熵为:

其表示,概率分布P(x)编码时,平均每个基本事件(符号)至少需要多少比特编码。通过信息熵的学习,我们知道不存在其他比按照本身概率分布更好的编码方式了,所以D(P||Q)始终大于等于0的。虽然KL被称为距离,但是其不满足距离定义的三个条件:1)非负性;2)对称性(不满足);3)三角不等式(不满足)。

我们以一个例子来说明,KL距离的含义。

假如一个字符发射器,随机发出0和1两种字符,真实发出概率分布为A,但实际不知道A的具体分布。现在通过观察,得到概率分布B与C。各个分布的具体情况如下:

A(0)=1/2,A(1)=1/2

B(0)=1/4,B(1)=3/4

C(0)=1/8,C(1)=7/8

那么,我们可以计算出得到如下:

也即,这两种方式来进行编码,其结果都使得平均编码长度增加了。我们也可以看出,按照概率分布B进行编码,要比按照C进行编码,平均每个符号增加的比特数目少。从分布上也可以看出,实际上B要比C更接近实际分布。

如果实际分布为C,而我们用A分布来编码这个字符发射器的每个字符,那么同样我们可以得到如下:

再次,我们进一步验证了这样的结论:对一个信息源编码,按照其本身的概率分布进行编码,每个字符的平均比特数目最少。这就是信息熵的概念,衡量了信息源本身的不确定性。另外,可以看出KL距离不满足对称性,即D(P||Q)不一定等于D(Q||P)。

当然,我们也可以验证KL距离不满足三角不等式条件。

上面的三个概率分布,D(B||C)=1/4log2+3/4log(6/7)。可以得到:D(A||C) - (D(A||B)+ D(B||C)) =1/2log2+1/4log(7/6)>0,这里验证了KL距离不满足三角不等式条件。所以KL距离,并不是一种距离度量方式,虽然它有这样的学名。

其实,KL距离在信息检索领域,以及统计自然语言方面有重要的运用。我们将会把它留在以后的章节中介绍。

其他相关链接:http://en.wikipedia.org/wiki/Kullback-Leibler_divergence

http://hi.baidu.com/shdren09/item/e6441ec2bd495b0e0ad93aca

利用信息论的方法可以进行一些简单的自然语言处理

比如利用相对熵进行分类或者是利用相对熵来衡量两个随机分布的差距,当两个随机分布相同时,其相对熵为0.当两个随机分布的差别增加时,器相对熵也增加。我们下面的实验是为了横量概率分布的差异。

试验方法、要求和材料

要求:

1.任意摘录一段文字,统计这段文字中所有字符的相对频率。假设这些相对频率就是这些字符的概率(即用相对频率代替概率);

2.另取一段文字,按同样方法计算字符分布概率;

3.计算两段文字中字符分布的KL距离;

4.举例说明(任意找两个分布p和q),KL距离是不对称的,即D(p//q)!=D(q//p);

方法:

D(p//q)=sum(p(x)*log(p(x)/q(x)))。其中p(x)和q(x)为两个概率分布

约定 0*log(0/q(x))=0;p(x)*log(p(x)/0)=infinity;

具体实验可参考:http://www.cnblogs.com/finallyliuyu/archive/2010/03/12/1684015.html

相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence),信息增益(information gain)。 
  KL散度是两个概率分布P和Q差别的非对称性的度量。

KL散度是用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的比特个数。 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布。

  根据shannon的信息论,给定一个字符集的概率分布,我们可以设计一种编码,使得表示该字符集组成的字符串平均需要的比特数最少。假设这个字符集是X,对x∈X,其出现概率为P(x),那么其最优编码平均需要的比特数等于这个字符集的熵:

  H(X)=∑x∈XP(x)log[1/P(x)]

  在同样的字符集上,假设存在另一个概率分布Q(X)。如果用概率分布P(X)的最优编码(即字符x的编码长度等于log[1/P(x)]),来为符合分布Q(X)的字符编码,那么表示这些字符就会比理想情况多用一些比特数。KL-divergence就是用来衡量这种情况下平均每个字符多用的比特数,因此可以用来衡量两个分布的距离。即:

  DKL(Q||P)=∑x∈XQ(x)[log(1/P(x))] - ∑x∈XQ(x)[log[1/Q(x)]]=∑x∈XQ(x)log[Q(x)/P(x)]

  由于-log(u)是凸函数,因此有下面的不等式

  DKL(Q||P) = -∑x∈XQ(x)log[P(x)/Q(x)] = E[-logP(x)/Q(x)] ≥ -logE[P(x)/Q(x)] = -  log∑x∈XQ(x)P(x)/Q(x) = 0

  即KL-divergence始终是大于等于0的。当且仅当两分布相同时,KL-divergence等于0。

  ===========================

  举一个实际的例子吧:比如有四个类别,一个方法A得到四个类别的概率分别是0.1,0.2,0.3,0.4。另一种方法B(或者说是事实情况)是得到四个类别的概率分别是0.4,0.3,0.2,0.1,那么这两个分布的KL-Distance(A,B)=0.1*log(0.1/0.4)+0.2*log(0.2/0.3)+0.3*log(0.3/0.2)+0.4*log(0.4/0.1)

  这个里面有正的,有负的,可以证明KL-Distance()>=0.

  从上面可以看出, KL散度是不对称的。即KL-Distance(A,B)!=KL-Distance(B,A)

  KL散度是不对称的,当然,如果希望把它变对称,

  Ds(p1, p2) = [D(p1, p2) + D(p2, p1)] / 2.

二、第二种理解

  今天开始来讲相对熵,我们知道信息熵反应了一个系统的有序化程度,一个系统越是有序,那么它的信息熵就越低,反之就越高。下面是熵的定义

  如果一个随机变量的可能取值为,对应的概率为,则随机变量的熵定义为

  有了信息熵的定义,接下来开始学习相对熵。

  1. 相对熵的认识

相对熵又称互熵,交叉熵,鉴别信息,Kullback熵,Kullback-Leible散度(即KL散度)等。设

取值的两个概率概率分布,则的相对熵为

在一定程度上,熵可以度量两个随机变量的距离。KL散度是两个概率分布P和Q差别的非对称性的度量。KL散度是

用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的位元数。 典型情况下,P表示数据的真实分布,Q

表示数据的理论分布,模型分布,或P的近似分布。

2. 相对熵的性质

相对熵(KL散度)有两个主要的性质。如下

(1)尽管KL散度从直观上是个度量或距离函数,但它并不是一个真正的度量或者距离,因为它不具有对称性,即

(2)相对熵的值为非负值,即

在证明之前,需要认识一个重要的不等式,叫做吉布斯不等式。内容如下

  3. 相对熵的应用

相对熵可以衡量两个随机分布之间的距离,当两个随机分布相同时,它们的相对熵为零,当两个随机分布的差别增

大时,它们的相对熵也会增大。所以相对熵(KL散度)可以用于比较文本的相似度,先统计出词的频率,然后计算

KL散度就行了。另外,在多指标系统评估中,指标权重分配是一个重点和难点,通过相对熵可以处理。

三、用在CF中

  第一,KLD需要概率(脸颊和1),但是用评分。

  第二,后面两项的作用。

今天开始来讲相对熵,我们知道信息熵反应了一个系统的有序化程度,一个系统越是有序,那么它的信息熵就越低,反

之就越高。下面是熵的定义

如果一个随机变量的可能取值为,对应的概率为,则随机变

的熵定义为

有了信息熵的定义,接下来开始学习相对熵。

Contents

   1. 相对熵的认识

   2. 相对熵的性质

   3. 相对熵的应用

1. 相对熵的认识

相对熵又称互熵,交叉熵,鉴别信息,Kullback熵,Kullback-Leible散度(即KL散度)等。设

取值的两个概率概率分布,则的相对熵为

在一定程度上,熵可以度量两个随机变量的距离。KL散度是两个概率分布P和Q差别的非对称性的度量。KL散度是

用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的位元数。 典型情况下,P表示数据的真实分布,Q

表示数据的理论分布,模型分布,或P的近似分布。

2. 相对熵的性质

相对熵(KL散度)有两个主要的性质。如下

(1)尽管KL散度从直观上是个度量或距离函数,但它并不是一个真正的度量或者距离,因为它不具有对称性,即

(2)相对熵的值为非负值,即

在证明之前,需要认识一个重要的不等式,叫做吉布斯不等式。内容如下

3. 相对熵的应用

相对熵可以衡量两个随机分布之间的距离,当两个随机分布相同时,它们的相对熵为零,当两个随机分布的差别增

大时,它们的相对熵也会增大。所以相对熵(KL散度)可以用于比较文本的相似度,先统计出词的频率,然后计算

KL散度就行了。另外,在多指标系统评估中,指标权重分配是一个重点和难点,通过相对熵可以处理。

在Julia中,有一个KLDivergence包,用来计算两个分布之间的K-L距离,它需要依赖Distributions包,用

法详见:https://github.com/johnmyleswhite/KLDivergence.jl

时间: 2024-08-29 17:19:35

KL距离,Kullback-Leibler Divergence的相关文章

(转载)KL距离,Kullback-Leibler Divergence

转自:KL距离,Kullback-Leibler Divergence KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy).它衡量的是相同事件空间里的两个概率分布的差异情况.其物理意义是:在相同事件空间里,概率分布P(x)的事件空间,若用概率分布Q(x)编码时,平均每个基本事件(符号)编码长度增加了多少比特.我们用D(P||Q)表示KL距离,计算公式如下: 注:当两个分布比较接近时,D

交叉熵

http://www.cnblogs.com/ljy2013/p/6432269.html 作者:Noriko Oshima链接:https://www.zhihu.com/question/41252833/answer/108777563来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 熵的本质是香农信息量()的期望. 现有关于样本集的2个概率分布p和q,其中p为真实分布,q非真实分布.按照真实分布p来衡量识别一个样本的所需要的编码长度的期望(即平均编码长度)为

提高驾驶技术:用GAN去除(爱情)动作片中的马赛克和衣服

作为一名久经片场的老司机,早就想写一些探讨驾驶技术的文章.这篇就介绍利用生成式对抗网络(GAN)的两个基本驾驶技能: 1) 去除(爱情)动作片中的马赛克 2) 给(爱情)动作片中的女孩穿(tuo)衣服 生成式模型 上一篇<用GAN生成二维样本的小例子>中已经简单介绍了GAN,这篇再简要回顾一下生成式模型,算是补全一个来龙去脉. 生成模型就是能够产生指定分布数据的模型,常见的生成式模型一般都会有一个用于产生样本的简单分布.例如一个均匀分布,根据要生成分布的概率密度函数,进行建模,让均匀分布中的样

如何通俗的解释交叉熵与相对熵

[From] https://www.zhihu.com/question/41252833/answer/108777563 熵的本质是香农信息量()的期望. 现有关于样本集的2个概率分布p和q,其中p为真实分布,q非真实分布.按照真实分布p来衡量识别一个样本的所需要的编码长度的期望(即平均编码长度)为:H(p)=.如果使用错误分布q来表示来自真实分布p的平均编码长度,则应该是:H(p,q)=.因为用q来编码的样本来自分布p,所以期望H(p,q)中概率是p(i).H(p,q)我们称之为"交叉熵

B-概率论-熵和信息增益

目录 熵和信息增益 一.熵(Entropy) 二.条件熵(Conditional Entropy) 三.联合熵(Joint Entropy) 四.相对熵(Relative Entropy) 4.1 相对熵的性质 五.交叉熵(Cross Entropy) 六.相对熵.交叉熵和熵的关系 七.信息增益(Information Gain) 八.信息增益比(Information Gain Ratio) 九.一张图带你看懂熵和信息增益 更新.更全的<机器学习>的更新网站,更有python.go.数据结构

概率分布之间的距离度量以及python实现

1. 欧氏距离(Euclidean Distance)       欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式.(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:(3)两个n维向量a(x11,x12,-,x1n)与 b(x21,x22,-,x2n)间的欧氏距离:(4)也可以用表示成向量运算的形式: python中的实现: 方法一: import numpy as np x=

ELBO 与 KL散度

浅谈KL散度 一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence),信息增益(information gain). KL散度是两个概率分布P和Q差别的非对称性的度量. KL散度是用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的比特个数. 典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布. 根据shannon的

相似性度量方法

http://blog.csdn.net/pipisorry/article/details/45651315 cosin余弦相似度 两个向量间的余弦值可以很容易地通过使用欧几里得点积和量级公式推导: 鉴于两个向量的属性, A 和B的余弦相似性θ用一个点积形式来表示其大小,如下所示: 产生的相似性范围从-1到1:-1意味着两个向量指向的方向正好截然相反,1表示它们的指向是完全相同的,0通常表示它们之间是独立的,而在这之间的值则表示中度的相似性或相异性. 对于文本匹配,属性向量A 和B 通常是文档

【Learning Notes】变分自编码(Variational Auto-Encoder,VAE)

近年,随着有监督学习的低枝果实被采摘的所剩无几,无监督学习成为了研究热点.VAE(Variational Auto-Encoder,变分自编码器)[1,2] 和 GAN(Generative Adversarial Networks) 等模型,受到越来越多的关注. 笔者最近也在学习 VAE 的知识(从深度学习角度).首先,作为工程师,我想要正确的实现 VAE 算法,以及了解 VAE 能够帮助我们解决什么实际问题:作为人工智能从业者,我同时希望在一定程度上了解背后的原理. 作为学习笔记,本文按照由