Spark 性能相关参数配置详解-压缩与序列化篇

随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。

由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便于更新内容

压缩和序列化相关

spark.serializer

默认为org.apache.spark.serializer.JavaSerializer, 可选org.apache.spark.serializer.KryoSerializer, 实际上只要是org.apache.spark.serializer的子类就可以了,不过如果只是应用,大概你不会自己去实现一个的。

序列化对于spark应用的性能来说,还是有很大影响的,在特定的数据格式的情况下,KryoSerializer的性能可以达到JavaSerializer的10倍以上,当然放到整个Spark程序中来考量,比重就没有那么大了,但是以Wordcount为例,通常也很容易达到30%以上的性能提升。而对于一些Int之类的基本类型数据,性能的提升就几乎可以忽略了。KryoSerializer依赖Twitter的Chill库来实现,相对于JavaSerializer,主要的问题在于不是所有的Java Serializable对象都能支持。

需要注意的是,这里可配的Serializer针对的对象是Shuffle数据,以及RDD Cache等场合,而Spark Task的序列化是通过spark.closure.serializer来配置,但是目前只支持JavaSerializer,所以等于没法配置啦。

更多Kryo序列化相关优化配置,可以参考 http://spark.apache.org/docs/latest/tuning.html#data-serialization 一节

spark.rdd.compress

这个参数决定了RDD Cache的过程中,RDD数据在序列化之后是否进一步进行压缩再储存到内存或磁盘上。当然是为了进一步减小Cache数据的尺寸,对于Cache在磁盘上而言,绝对大小大概没有太大关系,主要是考虑Disk的IO带宽。而对于Cache在内存中,那主要就是考虑尺寸的影响,是否能够Cache更多的数据,是否能减小Cache数据对GC造成的压力等。

这两者,前者通常不会是主要问题,尤其是在RDD Cache本身的目的就是追求速度,减少重算步骤,用IO换CPU的情况下。而后者,GC问题当然是需要考量的,数据量小,占用空间少,GC的问题大概会减轻,但是是否真的需要走到RDDCache压缩这一步,或许用其它方式来解决可能更加有效。

所以这个值默认是关闭的,但是如果在磁盘IO的确成为问题或者GC问题真的没有其它更好的解决办法的时候,可以考虑启用RDD压缩。

spark.broadcast.compress

是否对Broadcast的数据进行压缩,默认值为True。

Broadcast机制是用来减少运行每个Task时,所需要发送给TASK的RDD所使用到的相关数据的尺寸,一个Executor只需要在第一个Task启动时,获得一份Broadcast数据,之后的Task都从本地的BlockManager中获取相关数据。在1.1最新版本的代码中,RDD本身也改为以Broadcast的形式发送给Executor(之前的实现RDD本身是随每个任务发送的),因此基本上不太需要显式的决定哪些数据需要broadcast了。

因为Broadcast的数据需要通过网络发送,而在Executor端又需要存储在本地BlockMananger中,加上最新的实现,默认RDD通过Boradcast机制发送,因此大大增加了Broadcast变量的比重,所以通过压缩减小尺寸,来减少网络传输开销和内存占用,通常都是有利于提高整体性能的。

什么情况可能不压缩更好呢,大致上个人觉得同样还是在网络带宽和内存不是问题的时候,如果Driver端CPU资源很成问题(毕竟压缩的动作基本都在Driver端执行),那或许有调整的必要。

spark.io.compression.codec

RDD Cache和Shuffle数据压缩所采用的算法Codec,默认值曾经是使用LZF作为默认Codec,最近因为LZF的内存开销的问题,默认的Codec已经改为Snappy。

LZF和Snappy相比较,前者压缩率比较高(当然要看具体数据内容了,通常要高20%左右),但是除了内存问题以外,CPU代价也大一些(大概也差20%~50%?)

在用于Shuffle数据的场合下,内存方面,应该主要是在使用HashShuffleManager的时候有可能成为问题,因为如果Reduce分区数量巨大,需要同时打开大量的压缩数据流用于写文件,进而在Codec方面需要大量的buffer。但是如果使用SortShuffleManager,由于shuffle文件数量大大减少,不会产生大量的压缩数据流,所以内存开销大概不会成为主要问题。

剩下的就是CPU和压缩率的权衡取舍,和前面一样,取决于CPU/网络/磁盘的能力和负载,个人认为CPU通常更容易成为瓶颈。所以要调整性能,要不不压缩,要不使用Snappy可能性大一些?

对于RDD Cache的场合来说,绝大多数场合都是内存操作或者本地IO,所以CPU负载的问题可能比IO的问题更加突出,这也是为什么spark.rdd.compress 本身默认为不压缩,如果要压缩,大概也是Snappy合适一些?

时间: 2024-10-09 10:42:25

Spark 性能相关参数配置详解-压缩与序列化篇的相关文章

Spark 性能相关参数配置详解-shuffle篇

作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 在Spark的官方文档http://spark.apache.org/docs/latest/configuration.html 中提供了这些可配置参数中相当大一部分的说明. 但是文档的更新总是落后于代码的开发的, 还有一些配置参数没有来得及被添加到

Spark 性能相关参数配置详解-Storage篇

随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化. 由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便于更新内容 Storage相关配置参数 spark.local.dir 这个看起来很简单,就是Spark用于写中间数据,如RDD Cache,Shu

Spark 性能相关参数配置详解-任务调度篇

随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化. 由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便于更新内容 schedule调度相关 调度相关的参数设置,大多数内容都很直白,其实无须过多的额外解释,不过基于这些参数的常用性(大概会是你针对自己的

nginx一些参数配置详解

nginx的配置:    正常运行的必备配置:       1.user username [groupname];           指定运行worker进程的用户和组       2.pid /path/to/pidfile_name nginx的pid文件 3.worker_rlimit_nofile #;            一个worker进程所能够打开的最大文件句柄数:       4.worker_rlimit_sigpending #;            设定每个用户能够

zabbix_agentd.conf zabbix客户端配置文件的相关参数的详解:(二)

zabbix_agentd.conf zabbix客户端配置文件的相关参数的详解: Alias key的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID.你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid. 备注: 别名不能重复,但是可以有多个alias对

linux串口编程参数配置详解

1.linux串口编程需要的头文件 #include <stdio.h>         //标准输入输出定义 #include <stdlib.h>        //标准函数库定义 #include <unistd.h>       //Unix标准函数定义 #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h>          //文件控制定义 #incl

Nginx相关基础配置详解

一.I/O类型及与其相关概念: 1.1同步和异步:synchronous, asynchronous  [关注的是消息通知机制] 同步:调用发出不会立即返回,但一旦返回就可以返回最终结果: 异步:调用发出之后,被调用方立即返回消息,但返回的非最终结果:被调用者通过状态.通知机制来通知调者,或通过回调函数来处理结果: 1.2阻塞和非阻塞:block, nonblock[关注的是调用等等调用结果(消息.返回值)时的状态] 阻塞:调用结果返回之前,调用者(调用线程)会被挂起:调用者只有在得到结果之后才

logback 常用参数配置详解

logback 常用配置详解(二) <appender> <appender>: <appender>是<configuration>的子节点,是负责写日志的组件. <appender>有两个必要属性name和class.name指定appender名称,class指定appender的全限定名. 1.ConsoleAppender: 把日志添加到控制台,有以下子节点: <encoder>:对日志进行格式化.(具体参数稍后讲解 ) &

JVM参数配置详解

1. JVM中的年轻代,年老代和持久代区别与联系 JVM中的GC算法采用的是分代收集的策略,即将内存分为几个区域,将不同生命周期的对象放在不同区域里.如下所示: (1)在GC收集的时候,频繁收集生命周期短的区域(年轻代): (2)比较少的收集生命周期比较长的区域(年老代): (3)基本不收集的永久区(持久代). 年轻代分为1个Eden区和2个Survivor区,新建对象都保存在Survivor区中.当Eden区满则进行Minor GC,将Eden区和一个Survivor区清理到年老代中.这时不能