tp处理首页高并发访问

  1. 首先静态缓存首页

2.会在目录中生成一个index.shtml静态缓存文件;

3.静态文件都有缓存器,当时间一到,高并发访问首页时,会产生数据库压力,这时用到文件锁,

改变tp读取html行为文件的代码;

4.注意点,fp得设置成全局变量,文件锁得自己手动创建;

时间: 2024-11-13 10:00:59

tp处理首页高并发访问的相关文章

面试常问问题:银行网上支付项目中怎么控制多线程高并发访问?

面试常问问题:银行网上支付项目中怎么控制多线程高并发访问? synchronized关键字主要解决多线程共享数据同步问题. ThreadLocal使用场合主要解决多线程中数据因并发产生不一致问题. ThreadLocal和Synchonized都用于解决多线程并发访问.但是ThreadLocal与synchronized有本质的区别: synchronized是利用锁的机制,使变量或代码块在某一时该只能被一个线程访问.而ThreadLocal为每一个线程都提供了变量的副本,使 得每个线程在某一时

ql Server 高频,高并发访问中的键查找死锁解析

死锁对于DBA或是数据库开发人员而言并不陌生,它的引发多种多样,一般而言,数据库应用的开发者在设计时都会有一定的考量进而尽量避免死锁的产生.但有时因为一些特殊应用场景如高频查询,高并发查询下由于数据库设计的潜在问题,一些不易捕捉的死锁可能出现从而影响业务.这里为大家介绍由于设计问题引起的键查找死锁及相关的解决办法. 这里我们在测试的同时开启trace profiler跟踪死锁视图(locks:deadlock graph).(当然也可以开启跟踪标记,或者应用扩展事件(xevents)等捕捉死锁)

[转]高并发访问下避免对象缓存失效引发Dogpile效应

避免Redis/Memcached缓存失效引发Dogpile效应 Redis/Memcached高并发访问下的缓存失效时可能产生Dogpile效应(Cache Stampede效应). 推荐阅读:高并发下的 Nginx 优化方案 http://www.linuxidc.com/Linux/2013-01/78791.htm 避免Memcached缓存的Dogpile效应 Memcached的read-through cache流程:客户端读取缓存,没有的话就由客户端生成缓存.Memcached缓

高并发访问和海量数据 大型网站架构技术一览

高并发访问和海量数据 大型网站架构技术一览 林涛 发表于:2016-4-19 12:12 分类:WebServer 标签:并发,海量数据,高并发 44次 大型网站的挑战主要来自庞大的用户,高并发的访问和海量数据,任何简单的业务一旦需要处理数以P计的数据和面对数以亿计的用户,问题就会变得棘手.大型网站架构主要就是解决这类问题. 本文内容大部分来自<大型网站技术架构>,这本书很值得一看,强烈推荐. 1.前端架构 前端指用户请求到达网站应用服务器之前经历的环节,通常不包含网站业务逻辑,不处理动态内容

Sql Server 高频,高并发访问中的键查找死锁解析

死锁对于DBA或是数据库开发人员而言并不陌生,它的引发多种多样,一般而言,数据库应用的开发者在设计时都会有一定的考量进而尽量避免死锁的产生.但有时因为一些特殊应用场景如高频查询,高并发查询下由于数据库设计的潜在问题,一些不易捕捉的死锁可能出现从而影响业务.这里为大家介绍由于设计问题引起的键查找死锁及相关的解决办法. 这里我们在测试的同时开启trace profiler跟踪死锁视图(locks:deadlock graph).(当然也可以开启跟踪标记,或者应用扩展事件(xevents)等捕捉死锁)

解决数据库高并发访问瓶颈问题

一.缓存式的Web应用程序架构: 在Web层和db层之间加一层cache层,主要目的:减少数据库读取负担,提高数据读取速度.cache存取的媒介是内存,可以考虑采用分布式的cache层,这样更容易破除内存容量的限制,同时增加了灵活性. 二.实现MySQL数据库异步查询实现: 通常情况下在PHP中MySQL查询是串行的,如果能实现MySQL查询的异步化,就能实现多条SQL语句同时执行,这样就能大大地缩短MySQL查询的耗时,提高数据库查询的效率.目前MySQL的异步查询只在MySQLi扩展提供,查

高并发访问mysql时的问题(一):库存超减

如果在对某行记录的更新时不采取任何防范措施,在多线程访问时,就容易出现库存为负数的错误. 以下用php.mysql,apache ab工具举例说明: mysql表结构 CREATE TABLE `yxt_test_concurrence` ( `id` int(11) NOT NULL AUTO_INCREMENT, `value` int(11) NOT NULL COMMENT '库存', PRIMARY KEY (`id`) ) ENGINE=InnoDB AUTO_INCREMENT=2

大数据量高并发访问的数据库优化方法

一.数据库结构的设计 如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能.所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的. 在一个系统分析.设计阶段,因为数据量较小,负荷较低.我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程. 所以在考虑整个系统的流程的时候,我们必须

利用Memcache解决数据库高并发访问的瓶颈问题

转载:[转载请标明本文地址:http://www.jizhuomi.com/software/317.html] 对于高并发高访问的Web应用程序来说,数据库存取瓶颈一直是个令人头疼的问题.特别当你的程序架构还是建立在单数据库模式,而一个数据池连接数峰值已经达到500的时候,那你的程序运行离崩溃的边缘也不远了.很多小网站的开发人员一开始都将注意力放在了产品需求设计上,缺忽视了程序整体性能,可扩展性等方面的考虑,结果眼看着访问量一天天网上爬,可突然发现有一天网站因为访问量过大而崩溃了,到时候哭都来